Math, asked by ikki2769, 8 days ago

what is the probablity of getting 3 white balls in a draw of 3 balls from a box containing 6 white and 5 red balls

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

↝ A box having 6 white balls and 5 red balls.

↝ Total number of balls = 6 + 5 = 11 balls

We know,

The number of ways in which r objects can be taken out randomly from n objects is

\red{\rm :\longmapsto\:\boxed{ \tt{ \: ^nC_r \:  =  \:  \frac{n!}{r! \: (n - r)!} \: }}}

So,

Total Number of ways in which 3 balls can be taken out randomly from 11 balls ( 6 white + 5 red balls ) is

 \red{\rm :\longmapsto\:^{11}C_3}

\rm \:  =  \: \dfrac{11!}{3! \: (11 - 3)!}

\rm \:  =  \: \dfrac{11!}{3! \: 8!}

\rm \:  =  \: \dfrac{11 \times 10 \times 9 \times 8!}{3 \times 2 \times 1 \times  \: 8!}

\rm \:  =  \: 165

Now, Number of ways in which 3 white balls can be taken out from 6 white balls is

 \red{\rm :\longmapsto\:^{6}C_3}

\rm \:  =  \: \dfrac{6!}{3! \: (6 - 3)!}

\rm \:  =  \: \dfrac{6 \times 5 \times 4 \times 3!}{3 \times 2 \times 1 \times  3!}

\rm \:  =  \: 20

So, Required Probability of getting 3 white balls from 6 white and 5 red balls is

\rm \:  =  \: \dfrac{20}{165}

\rm \:  =  \: \dfrac{4}{33}

Hence,

 \purple{\rm \implies\:\boxed{ \tt{ \: Required \: Probability \:  =  \:  \frac{4}{33} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: P(A\cup  B) = P(A) + P(B) - P(A\cap  B) \: }}

\boxed{ \tt{ \: P(A\cap  B') = P(A) - P(A\cap  B) \: }}

\boxed{ \tt{ \: P(A'\cap  B') = 1 - P(A\cup  B) \: }}

\boxed{ \tt{ \: P(A'\cup  B') = 1 - P(A\cap  B) \: }}

If A and B are independent events then

\boxed{ \tt{ \: P(A\cap  B) = P(A) \: P(B) \: }}

If A and B are mutually exclusive events, then

\boxed{ \tt{ \: P(A\cap  B) = 0 \: }}

If A and B are mutually exhaustive events, then

\boxed{ \tt{ \: P(A\cup  B) = 1 \: }}

Similar questions