Math, asked by horselover13, 1 year ago

What is the product of 2x^3+x-5 and x^3-3x-4 ?

(a) Show your work.

(b) Is the product of -2x^3+x-5 and x^3-3x-4 equal to the product of x^3-3x-4 and -2x^3+x-5?
 Explain your answer.

Answers

Answered by pinakimandal53
1
FULL ANSWERS WITH STEPS

(a) Product of 2x^{3}+x-5 and x^{3}-3x-4
(2x^{3}+x-5)(x^{3}-3x-4)
=2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
=2x^{3}*x^{3}+2x^{3}*(-3x)+2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
=2x^{6}-6x^{4}-8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
=2x^{6}-6x^{4}+x^{4}-8x^{3}-5x^{3}-3x^{2}-4x+15x+20
=2x^{6}-5x^{4}-13x^{3}-3x^{2}+11x+20

(b)
1)Finding the product of -2x^{3}+x-5 and x^{3}-3x-4
(-2x^{3}+x-5)(x^{3}-3x-4)
=-2x^{3}(x^{3}-3x-4)+x(x^{3}-3x-4)-5(x^{3}-3x-4)
=-2x^{3}*x^{3}-2x^{3}*(-3x)-2x^{3}*(-4)+x*x^{3}+x*(-3x)+x*(-4)-5*x^{3}-5*(-3x)-5*(-4)
=-2x^{6}+6x^{4}+8x^{3}+x^{4}-3x^{2}-4x-5x^{3}+15x+20
=-2x^{6}+6x^{4}+x^{4}+8x^{3}-5x^{3}-3x^{2}-4x+15x+20
=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
(-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(1)

2) Finding the product of x^{3}-3x-4 and -2x^{3}+x-5
(x^{3}-3x-4)(-2x^{3}+x-5)
=(-2x^{3}+x-5)(x^{3}-3x-4)
=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20
(x^{3}-3x-4)(-2x^{3}+x-5)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  ...(2) [Using (1)]

Now, 
(-2x^{3}+x-5)(x^{3}-3x-4)=(-2x^{3}+x-5)(x^{3}-3x-4)
(-2x^{3}+x-5)(x^{3}-3x-4)=-2x^{6}+7x^{4}+3x^{3}-3x^{2}+11x+20  [Using (1)]
(-2x^{3}+x-5)(x^{3}-3x-4)=(x^{3}-3x-4)(-2x^{3}+x-5)    [Using (2)]

∴ Product of -2x^{3}+x-5 and x^{3}-3x-4 = Product of x^{3}-3x-4 and -2x^{3}+x-5

Hope these may help you. 

If you have any doubt, then you can ask me in the comments. 
Similar questions