Math, asked by indhrasathish1, 10 months ago

What is the product of zeroes of Polynomial P(x) = x2 – 9x + 10​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Polynomial is}\;\mathsf{x^2-9x+10}

\textbf{To find:}

\textsf{Product of zeroes of the given polynomial}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$\mathsf{For\;the\;polynomial\;ax^2+bx+c\;}\\\\\mathsf{Sum\;of\;zeroes=\dfrac{-b}{a}}\\\\\mathsf{Product\;of\;zeroes=\dfrac{c}{a}}$\end{minipage}}

\mathsf{Consider,\;x^2-9x+10}

\mathsf{Product\;of\;zeroes=\dfrac{c}{a}}

\mathsf{Product\;of\;zeroes=\dfrac{10}{1}}

\implies\boxed{\mathsf{Product\;of\;zeroes=10}}

\underline{\mathsf{Verification:}}

\mathsf{x^2-9x+10}

\mathsf{=(x^2-9x+\frac{81}{4})-\frac{81}{4}+10}

\mathsf{=(x-\frac{9}{2})^2-\frac{41}{4}}

\mathsf{=(x-\frac{9}{2})^2-(\frac{\sqrt{41}}{2})^2}

\mathsf{=(x-\frac{9}{2}-\frac{\sqrt{41}}{2})(x-\frac{9}{2}+\frac{\sqrt{41}}{2})}

\mathsf{=(x-(\frac{9}{2}+\frac{\sqrt{41}}{2}))(x-(\frac{9}{2}-\frac{\sqrt{41}}{2}))}

\implies\mathsf{Zeroes\;are\;\frac{9}{2}+\frac{\sqrt{41}}{2}\;\&\;\frac{9}{2}-\frac{\sqrt{41}}{2}}

\mathsf{Product\;of\;zeros=(\frac{9}{2}+\frac{\sqrt{41}}{2})(\frac{9}{2}-\frac{\sqrt{41}}{2})}

\mathsf{=\frac{81}{4}-\frac{41}{4}}

\mathsf{=\frac{81-41}{4}}

\mathsf{=\frac{40}{4}}

\mathsf{=10}

\textbf{Find more:}}

The product of the zeros of the polynomial root 2 X square + 3 x minus root 2 is

https://brainly.in/question/18011831

if one of the zeros of the cubic polynomial x cube + ax square + bx + c is equal to minus 1 then prove that the product of the other two zeros is b minus a + 1 ​

https://brainly.in/question/17903956

Similar questions