Math, asked by motapalukulamallesh2, 3 months ago

what is the quadratic polynomial the sum of whose zeroes are -3 by 2 and the product of the zeros is -1​

Answers

Answered by Anonymous
33

Given

⇒Sum of the zeroes(α + β) = -3/2

⇒Product of Zeroes (αβ) = -1

To form a Quadratic  Polynomial , we use this

⇒x² - (α + β)x + αβ = 0

Now Put the value

⇒x² - (-3/2)x + (-1) = 0

⇒x² + 3x/2 - 1 = 0

Now Taking Lcm , we get

⇒(2x² + 3x - 2)/2 = 0

⇒2x² + 3x - 2 = 0

Answer

⇒2x² + 3x - 2 = 0

                                                             

More Information

⇒Root of Quadratic x =  {-b±√(b²-4ac)}/2a

⇒To Form a Quadratic Equation

x² - (α + β)x + αβ = 0

⇒Discriminant(D) = b² - 4ac

⇒Sum of Roots(α+β) = -b/a

⇒Product(αβ) = c/a


amansharma264: good
Answered by BrainlyRish
53

Given : The sum of whose zeroes are \dfrac{-3}{2} and the product of the zeros is -1

Exigency to find : The Quadratic Polynomial.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\dag\:\:\it{ As,\:We\:know\:that\::}\\\\ \bf \bigstar\:\: Quadratic\: Polynomial\::\\

\qquad \dag\:\:\bigg\lgroup \sf{ x^2 - (sum\:of\:zeroes)x + Product \:of\:zeroes \:\: }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here sum of zeroes are \bf\dfrac{-3}{2} and the product of the zeros is -1 .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad :\implies \sf x^2 - \bigg( \dfrac{-3}{2}\bigg) x + (-1 ) = 0 \\\\

\qquad :\implies \sf x^2 + \dfrac{3}{2} x - 1  = 0 \\\\

\qquad :\implies \sf  \dfrac{2x^2 + 3x - 2 }{2}  = 0 \\\\

\qquad :\implies \sf  2x^2 + 3x - 2   = 0 \times 2 \\\\

\qquad :\implies \sf  2x^2 + 3x - 2   = 0 \\\\

\qquad \longmapsto \frak{\underline{\purple{\:\big( 2x^2 + 3x - 2\big) \quad \longrightarrow Quadratic\:Polynomial\:}} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Required \:Quadratic \:Polynomial \: \:is\:\bf{2x^2+3x-2}}}}\\

\rule{300}{1.5}

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\  1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad  \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad   \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━

Similar questions