Math, asked by lingalarashmitha, 9 days ago

what is the Quadratic polynomial the sum of whose zeroes is-3÷2 and the product of the zeroes is -1

Answers

Answered by SparklingBoy
231

 \large \dag Question :-

what is the Quadratic polynomial the sum of whose zeroes is    \sf\dfrac{ - 3}{ \:  \: 2}

and the product of the zeroes is -1

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Polynomial   \:  is \:  2x^2+3x-2}} }\\

 \large \dag Step by step Explanation :-

We Know that general form of any quadratic polynomial is :

  \red \bigstar \small \: \blue{\bigg \{ \underline{ \overline{\boxed{\rm  {x}^{2}  - (Sum \: of \: zeros)x + Product \: of \: zeros}}}  \bigg\}}

Here in this question we have ;

  • Sum of Zeros =    \sf\dfrac{ - 3}{ \:  \: 2}

  • Product of Zeros =    \sf-1

Substituting values in general form of quadratic polynomial ;

 \small:\longmapsto \rm Req{}^{d}.  \:  Poly nomial    =  {x}^{2}  -  \bigg(  \frac{ - 3}{ \:  \: 2} \bigg)x + ( - 1) \\

:\longmapsto \rm Req{}^{d}.  \:  Poly nomial  =  {x}^{2}  +  \frac{3}{2} x  - 1\\

: \green{\longmapsto\underline{\underline{{  \purple{ \rm Req{}^{d}.  \:  Poly nomial  =2x^2+3x-2 }}}}}\\

 \large \dag Additional Information :-

 Quadratic Polynomial with one Variable :

✪ The general form of the equation is ax² + bx + c = 0.

  • If a = 0, then the equation becomes to a linear equation.

  • If b = 0, then the roots of the equation becomes equal but opposite in sign.

  • If c = 0, then one of the roots is zero.

 Nature Of Roots :

✪ b² - 4ac is the discriminate of the equation Then ,

  • If b² - 4ac = 0, then the roots are real & equal.

  • If b² - 4ac > 0, then the roots are real & unequal.

  • If b² - 4ac < 0, then the roots are imaginary & no real roots.
Answered by devanshu1234321
79

QUESTION-:

what is the Quadratic polynomial the sum of whose zeroes is-3/2 and the product of the zeroes is -1

EXPLANATION-:

Let the roots of the given quadratic equation be -:

α & β

According to the given condition-:

α+β=-3/2 ,αβ=-1

We know that,Quadratic polynomial is -:

\bf \red\bigstar \: \: \orange{ \underbrace{ \underline{  \bf\; \blue{  x^2-(\alpha +\beta)x-(\alpha \beta)}}}}

Polynomial so formed-:

\rightarrow \bf\; x^2-(-\frac{3}{2}x)+(-1)\\\\\rightarrow \bf\; x^2+\frac{3}{2}x-1

So the quadratic equation is-:

\dashrightarrow \underline{\boxed{\bf\;x^2+\frac{3}{2}x-1 }}

RELATED QUESTIONS-:

https://brainly.in/question/43577807

Similar questions