Math, asked by Yuvraj4230, 1 year ago

What is the ratio of an area of a circle and equilateral triangle when diametre and height are equal

Answers

Answered by Anonymous
23

Solution :-

Given :

Diameter of a circle = Height of the equilateral triangle

⇒ d = (√3a)/2

Radius r = d/2 = (√3a)/4

⇒ r = (√3a)/4

⇒ r/a = √3/4

Ratio of area of a circle and equilateral triangle = Area of circle : Area of equilateral triangle

  = \dfrac{\pi {r}^{2} }{ \dfrac{ \sqrt{3} {a}^{2}  }{4} }

  = \dfrac{4\pi {r}^{2} }{\sqrt{3} {a}^{2}}

  = \dfrac{4\pi  }{\sqrt{3} }  \times  \dfrac{ {r}^{2} }{ {a}^{2} }

  = \dfrac{4\pi  }{\sqrt{3} }  \times   \bigg(\dfrac{r }{ a }  \bigg)^{2}

  = \dfrac{4\pi  }{\sqrt{3} }  \times   \bigg(\dfrac{ \sqrt{3} }{4}  \bigg)^{2}

  = \dfrac{4\pi  }{\sqrt{3} }  \times \dfrac{ {( \sqrt{3}) }^{2} }{4^{2} }

  = \dfrac{ \sqrt{3} \pi  }{4 }

= √3 π : 4

Hence, the ratio of an area of a circle and equilateral triangle is √3 π : 4

Answered by RvChaudharY50
159

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  • Diameter of circle = Height of Equaliteral ∆

.

\Large\underline\mathfrak{Question}

To Find ratio of Area of circle and Equaliteral ∆ .

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • Radius of circle = Diameter /2
  • Height of Equaliteral ∆ with side a is = √3a/2
  • Area of circle = πr² (where r is radius)
  • Area of Equaliteral ∆ = √3a²/4 .

\Large\underline{\underline{\sf{Solution}:}}

  • since \: it \: is \: given \: that \\  \\  \textbf{Diameter of circle = Height of Equaliteral triangle}  \\  \\ \red\leadsto \: 2r =  \frac{ \sqrt{3} a}{2}  \\  \\ \red\leadsto \: \large\boxed{\bold{r =  \frac{ \sqrt{3} a}{4} }} \\  \\ now \: required \: ratio:--- \:  \\  \\ \pi {r}^{2} : \:  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\ \red\leadsto \: \pi( \frac{ \sqrt{3} a}{4} ) ^{2} : \:  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\ \red\leadsto \: \pi \frac{ \sqrt{3} \times   \cancel{\sqrt{3}  {a}^{2}}  }{4 \times  \cancel{4}}   \: : \:  \frac{  \cancel{\sqrt{3} }}{ \cancel4}   \cancel{{a}^{2}}  \\  \\ \red\leadsto \:  \frac{\pi \sqrt{3} }{4} :1 \\  \\ \red\leadsto \: \pink{\large\boxed{\boxed{\bold{\pi \sqrt{3}:4  }}}}

Hence the required ratio of Area of circle and Equaliteral is =3π:4..

________________________________

\large\underline\textbf{Hope it Helps You.}

Similar questions