Math, asked by swapnildoiphode122, 6 months ago

what is the ratio of curved surface rea of the cylender and surface area of sphere​

Answers

Answered by prince5132
12

TO FIND :-

  • The ratio of CSA of Cylinder and Surface area of sphere.

FORMULAE USED :-

  • CSA of cylinder = 2πrh.
  • surface area of sphere = 4πr².

SOLUTION :-

 \\  :  \implies  \displaystyle \sf \:  \frac{CSA \:  of \:  Cylinder}{Surface \: area \: of \: Sphere}  =  \frac{2\pi rh}{4\pi r ^{2} }  \\  \\  \\

:  \implies  \displaystyle \sf \:  \frac{CSA \:  of \:  Cylinder}{Surface \: area \: of \: Sphere}   =  \frac{2\pi rh}{4\pi r \times r}  \\  \\  \\

:  \implies  \displaystyle \sf \:  \frac{CSA \:  of \:  Cylinder}{Surface \: area \: of \: Sphere}   =  \frac{h}{2r}  \\  \\  \\

:  \implies  \underline{ \boxed{ \displaystyle \sf \:  CSA \:  of \:  Cylinder \: : \: Surface \: area \: of \: Sphere = h \: : \: 2r}} \\  \\

Hence The ratio of CSA of Cylinder and Surface area of sphere is h : 2r.

Answered by Anonymous
23

Find:

  • Ratio of curved surface area of Cylinder and Surface Area of Sphere

Solution:

we, know that

\boxed{\sf Curved \: surface \: area \: of \: cylinder = 2 \pi rh}

And,

\boxed{\sf surface \: area \: of \: sphere = 4 \pi {r}^{2} }

So,

\heartsuit \sf Ratio  =  \dfrac{curved \: surface \: area \: of \: cylinder}{surface \: area \: of \: sphere}  \\  \\  \\  \dashrightarrow \sf Ratio  =  \dfrac{2 \pi rh}{4 \pi {r}^{2} } \\  \\  \\ \dashrightarrow \sf Ratio  =  \dfrac{rh}{2{r}^{2} }\\  \\  \\ \dashrightarrow \sf Ratio  =  \dfrac{rh}{2{r}^{2} }\\  \\  \\ \dashrightarrow \sf Ratio  =  \dfrac{rh}{2r \times r}\\  \\  \\ \dashrightarrow \sf Ratio  =  \dfrac{h}{2r}

Hence, Ratio of Curved surface area of Cylinder and Surface Area of Sphere = h : 2r

______________________________

\qquad \bf{Additional \: Info.}

 \begin{lgathered} \boxed{\begin{minipage}{8.7cm}  \bf \boxed{1} Curved\:surface\:area\:of\:cuboid =2(l + b)h \\  \\ \bf \boxed{2} Curved\:surface\:area\:of\:cube =4{a}^{2} \\  \\  \bf \boxed{3} Curved \: surface \: area \: of \: cylinder =2\pi rh \\  \\ \bf \boxed{4} Curved \: surface \: area \: of \: cone = \pi rl \\  \\ \bf \boxed{5} Curved \: surface \: area \: of \:hemisphere =2 \pi {r}^{2}  \\ \rule{250}{2} \\ \bf \boxed{1} Surface \: area \: of \: cuboid =2(lb + bh + hl) \\  \\\bf \boxed{2} Surface \: area \: of \: cube =6 {a}^{2}  \\  \\ \bf \boxed{3} Surface \: area \: of \: cylinder =2 \pi r(r + h) \\  \\ \bf \boxed{4} Surface \: area \: of \: cone = \pi r(l + r) \\  \\ \bf \boxed{5} Surface \: area \: of \: sphere=4 \pi {r}^{2}  \\  \\ \bf \boxed{6} Surface \: area \: of \: hemisphere =3 \pi {r}^{2}  \end{minipage}}\end{lgathered}

Similar questions