Math, asked by ritadevi88342, 6 months ago

what is the ratio of the areas of a circle and an equilateral triangle whose dianeter and a side are respctively equal​

Answers

Answered by Anonymous
106

Correct Question:- what is the ratio of the areas of a circle and an equilateral triangle whose dianeter and a side are respctively equal.

\large\rm

Required answer: \sf{\pi\:\ratio\:\sqrt{3}}

\large\rm

Given: Diameter of circle = side of equilateral triangle.

\large\rm

To find: Ratio of the areas of a circle and equilateral triangle.

\large\rm

Step by step solution:

\large\rm

Let Diameter of circle = \large\sf D

\large\rm

side of triangle = \large\sf D

\large\rm

Radius of circle \large\sf{ = \dfrac{D}{2}}

\large\rm

Diagrams:-

\large\rm

\large\bf{ 1. \big\rangle \;\; Circle }

\large\rm

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large D/2}\end{picture}

\large\rm

\large\bf{ 2. \big\rangle \;\; Triangle }

\large\rm

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

\large\rm

side of equilateral triangle \large\rm = \large\sf D

\large\rm

area of equilateral triangle \large\sf{ = \dfrac{\sqrt{3}}{4} (s)^2}

\large\rm

\large\sf { Ratio \: = \: \Bigg ( \dfrac{ A(\bigcirc)}{A( Eq. \triangle)} \Bigg )}

\large\rm

\large\sf{ = \Bigg ( \dfrac{\pi r^{2}}{\frac{\sqrt{3}}{4} (s)^2} \Bigg )}

\large\rm

\large\sf{ = \dfrac{\pi \times ( \frac{d}{2} )^2}{\frac{\sqrt{3}}{4} \times d^2}}

\large\rm

\large\sf{ = \dfrac{\frac{\pi \times d^2}{4}}{\frac{\sqrt{3}}{4} \times d^2}}

\large\rm

\large\sf{ \dfrac{\pi \times d \times d \times 4}{\sqrt{3} \times d \times d \times 4}}

\large\rm

\large\sf{ = \dfrac{\pi \times \cancel{d^2} \times \cancel{4}}{\sqrt{3} \times \cancel{d^2} \times \cancel{4}}}

\large\rm

\large\sf{ = \dfrac{\pi}{\sqrt{3}}}

\large\rm \therefore ratio \large\rm{ = \pi : \sqrt{3}}

Answered by FoXy84
6

Step-by-step explanation:

...................................

Similar questions