Math, asked by ashwin4041, 1 year ago

what is the ratio of the radius of circumcircle to the radius of incircle of an equilateral triangle​

Answers

Answered by Mankuthemonkey01
20

Radius of circumcircle of a triangle =

 \frac{abc}{4 \times area}  \\

Where, a, b and c are sides of the triangle.

Now, radius of incircle of a triangle =

 \frac{area}{s}  \\

where, s = semiperimeter.

Now for an equilateral triangle, sides are equal. Let the side be a

Hence, its semiperimeter = 3a/2

and area = √3/4 × a²

So, circumradius =

 \frac{a \times a \times a}{4 \times  \frac{ \sqrt{3} }{4}  {a}^{2} }  \\  \\  =  \frac{ {a}^{3} }{ \sqrt{3} {a}^{2}  }  \\  \\  =  \frac{a}{ \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3} }{3} a

Now, inradius of the equilateral triangle =

 \frac{ \frac{ \sqrt{3} }{4}  {a}^{2} }{ \frac{3a}{2} }  \\  \\  =  \frac{ \sqrt{3} }{4}  {a}^{2}  \times  \frac{2}{3a}  \\  \\ =  >   \frac{a}{2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3}a }{6}

So ratio of circumradius to inradius =

 \frac{ \frac{ \sqrt{3}a }{3} }{ \frac{ \sqrt{3}a }{6} }  \\  \\  =  \frac{ \sqrt{3} }{3} a \times  \frac{6}{ \sqrt{3}a }  \\  \\  =  \frac{2}{1}

Hence, ratio of circumradius to inradius = 2 : 1

:

Similar questions