Math, asked by ItzSecretBoy01, 5 hours ago

What is the ratio of the sum of volumes of two-cylinder of radius 1 cm and height 2 cm each

to the volume of a sphere of radius 3 cm?

Need help with this question, the answer I keep getting is 1:9​

Answers

Answered by CᴀᴘᴛᴀìɴLᴇᴠí
10

Answer:

\begin{gathered}\rm{ \underline{ \underline{ \red{Given}}}}\begin{cases}\sf Radius\:of\:two\:cylinders\: = \frak{1\:cm} & \\ \\\sf Height\:of\:two\:cylinders\: = \frak{2\:cm}& \\ \\ \sf Radius\:of\:sphere\: = \frak{31\:cm}&\end{cases}\\\\\end{gathered}

 \huge{ \underline{ \underline{ \frak{ \blue{to \:  find}}}}}

  • ratio of the sum of volumes of two cylinder to the volume of a sphere.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{\star{ \sf{ \underline{As \:  we \:  know \:  that,}}}}

 \sf \: Volume \:  of \:  Cylinder = \frak{\pi r^2 h}πr

\sf \: Volume \:  of  \: Sphere = \frak{\dfrac{4}{3} \pi r^3}

\begin{gathered} \orange{\bigstar\:{\underline{\sf{\pmb{According\:to\:the\:Question\::}}}}}\\\\\end{gathered}

  • There are two cylinder of equal radius and equal Height. So, We can say that there volume is also equal.

  • Now, We can calculate the ratio of volume of those two cylinders to the volume of sphere as,

⠀⠀⠀

\begin{gathered}:\implies \sf{\dfrac{2 \times (Volume\:of\:cylinder)}{ (Volume\:of\:sphere)}}\\\\\\ :\implies\sf \dfrac{2 \times \bigg( \dfrac{22}{7} \times (1)^2 \times 2 \bigg)}{ \dfrac{4}{3} \times \dfrac{22}{7} \times (3)^3}\\\\\\ :\implies\sf \dfrac{2 \times \bigg( \dfrac{22}{7} \times 1 \times 2 \bigg)}{ \dfrac{4}{\cancel{3}} \times \dfrac{22}{7} \times \cancel{27}}\\\\\\ :\implies\sf \dfrac{2 \times \dfrac{22}{7} \times 2}{4 \times \dfrac{22}{7} \times 9}\\\\\\:\implies\sf \dfrac{4 \times \cancel{\dfrac{22}{7}}}{4 \times \cancel{\dfrac{22}{7}} \times 9}\\\\\\ :\implies\sf \dfrac{\cancel{4}}{\cancel{4} \times 9}\\ \\\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies{\boxed{\underline{ \frak{ \purple{ \dfrac{1}{9}}}}}}\:\bigstar \\  \\\end{gathered}

[]\therefore\red{\underline{ \underline{\sf{Hence\:the\:required\:ratio\:is\: {\textsf{\textbf{1:9}}}}}}}

Answered by seemon29
0

Answer:

What is the ratio of the sum of volumes of two-cylinder of radius 1 cm and height 2 cm each to the volume of a sphere of radius 3 cm? Need help with this question, the answer I keep getting is 1:9

Step-by-step explanation:

please mark me as brainlist

Similar questions