WHAT IS THE RELATION BETWEEN LCM AND HCF
Answers
Answer:
H.C.F x L.C.M = product of the numbers
Step-by-step explanation:
The relation between LCM and HCF is as follows:
(i) The product of LCM and HCF of the given natural numbers is equivalent to the product of the given numbers.
From the given property, LCM × HCF of a number = Product of the Numbers
Consider two numbers A and B, then.
Therefore,LCM (A , B) × HCF (A , B) = A × B
Example 1: Show that the LCM (6, 15) × HCF (6, 15) = Product(6, 15)
Solution: LCM and HCF of 6 and 15:
6 = 2 × 3
15 = 3 x 5
LCM of 6 and 15 = 30
HCF of 6 and 15 = 3
LCM (6, 15) × HCF (6, 15) = 30 × 3 = 90
Product of 6 and 15 = 6 × 15 = 90
Hence, LCM (6, 15) × HCF (6, 15)=Product(6, 15) = 90
(ii) The LCM of given co-prime numbers is equal to the product of the numbers since the HCF of co-prime numbers is 1.
So, LCM of Co-prime Numbers = Product Of The Numbers
Example 2: 17 and 23 are two co-prime numbers. By using the given numbers verify that,
LCM of given co-prime Numbers = Product of the given Numbers
Solution: LCM and HCF of 17 and 23:
17 = 1 x 7
23 = 1 x 23
LCM of 17 and 23 = 391
HCF of 17 and 23 = 1
Product of 17 and 23 = 17 × 23 = 391
Hence, LCM of co-prime numbers = Product of the numbers
(iii) H.C.F. and L.C.M. of Fractions
LCM of fractions = LCM of Numerators / HCF of Denominators
HCF of fractions = HCF of Numerators / LCM of Denominators
Example 3: Find the LCM of the fractions 1 / 2 , 3 / 8, 3 / 4
Solution:
LCM of fractions = LCM of Numerators/HCF of Denominators
LCM of fractions = LCM (1,3,3)/HCF(2,8,4)=3/2
Example 4: Find the HCF of the fractions 3 / 5, 6 / 11, 9 / 20
HCF of fractions HCF of Numerators/LCM of Denominators
HCF of fractions = HCF (3,6,9)/LCM (5,11,20)=3/220