What is the relative error of momentum if velocity is (5.0+-0.2)m/sec and mass is (2.5+-0.4)kg?
Answers
Answer:
vf = 8.0 m/s
Explanation:
This question is best thought about conceptually using the principle that an objects momentum is changed when it encounters an impulse and the amount of change in momentum is equal to the impulse which it encounters.
Here an object starts with 20 units (kg•m/s) of momentum. It then encounters an impulse of 60 units (N•s) in the direction of motion. A 60-unit impulse will change the momentum by 60 units, either increasing or decreasing it. If the impulse is in the direction of an object's motion, then it will increase the momentum. So now the object has 80 units (kg•m/s) of momentum. The object then encounters a resistive force of 6.0 N for 8.0 s. This is equivalent to an impulse of 48 units (N•s). Since this impulse is "resistive" in nature, it will decrease the object's momentum by 48 units. The object now has 32 units of momentum. The question asks for the object's velocity after encountering these two impulses. Since momentum is the product of mass and velocity, the velocity can be easily determined.
p = m•v
vfinal = pfinal / m = (32 kg m/s) / (4.0 kg) = 8.0 m/s