Math, asked by dhanalakshmi9797, 7 months ago

what is the remainder when x³-2x²-5x+4divided by( x-2) ​

Answers

Answered by kaurjashan485
1

To check that x−2 is the factor of x3−2x2−5x+4

Then the value of x−2=0, so x=2.

So, put x=2 in expression, we get

f(x)=x3−2x2−5x+4

f(2)=(2)3−2(2)2−5(2)+4

⇒f(2)=8−2×4−5×2+4

⇒f(2)=8−8−10+4

⇒f(2)=−6

Remainder is not zero when x−2 divided polynomial x3−2x2−5x+4. 

Thus x−2 is not a factor of polynomial x3−2x2−5x+4.

Answered by gugan64
18

Answer:

\huge \sf \underline{ \ given\: : }

 \sf {x}^{3}  - 2 {x}^{2}  - 5x + 4 \: is \: divided

 \sf \: by \: (x - 2).

\huge \sf \underline{to \: find \ \: : }

 \sf remainder \: obtained \: when \\  \sf \:  {x}^{3}  -  {2x}^{2}  - 5x + 4 \: is \: divided \\  \sf \: (x - 2). \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\huge \sf \underline{solution \ \: : }

 \sf \: p(x) = 0

 \sf \: p(x) = x - 2

 \sf \: (x - 2) = 0

 \sf \: x = 0 + 2

 \red { \sf{ \to \: x = 2}}

 \sf \underline{let \: us \: substute \: the \: values \ \: : }

 \sf \to \:  {2}^{3}  - 2 ({2})^{2}  - 5(2) + 4

 \to \sf8 - 2(4) - (10) + 4

 \to \sf(8) -( 8) - (10) + 4

 \sf \to0 - 6

 \red \sf \to - 6

  • Therefore the remainder obtained is (-6)

  • Please mark as brainliest, follow me
Similar questions