Math, asked by Gursewak8675, 7 months ago

What is the remainder when1!+2!+3!+....1000 is divided by 12

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{1!+2!+3!+\;.\;.\;.\;.+1000!}

\underline{\textbf{To find:}}

\textsf{The remainder when}

\mathsf{1!+2!+3!+\;.\;.\;.\;.+1000!\;\;is\;divided\;by\;12}

\underline{\textbf{Solution:}}

\textsf{We know that,}

\textbf{From 4! onwards, each n! is a multiple of 12}

\mathsf{Consider,}

\mathsf{1!+2!+3!+\;.\;.\;.\;.+1000!}

\mathsf{=1!+2!+3!+(Multiple\;of\;12)}

\mathsf{=1+2+6+(Multiple\;of\;12)}

\mathsf{=9+(Multiple\;of\;12)}

\therefore\textsf{The remainder is 9 when}

\mathsf{1!+2!+3!+\;.\;.\;.\;.+1000!\;is\;divided\;by\;12}

Similar questions