Math, asked by suzatansari2016, 3 months ago

what is the side of a rhombus whose diagonal is 24 cm and 10 cm​

Answers

Answered by nidaq925
0

Answer:

question and answer both are there

Attachments:
Answered by BrainlyRish
3

❍ Let's Consider D_{1} \:and\:D_{2} be two diagonals of Rhombus.

⠀⠀⠀⠀⠀ The Formula for Side of Rhombus is given by :

\dag\frak{\underline { As,\:We\:know\:that\::}}\\

\star\boxed{\pink{\sf{ \: Side_{(Rhombus)} =  \sqrt { \bigg(\dfrac{D_{1}\:}{2}\bigg)^{2} + \bigg(\dfrac{D_{2}\:}{2}\bigg)^{2}  }}}}\\

Where,

  • D_{1} \:and\:D_{2} are two diagonals of Rhombus

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad:\implies \tt {Side_{(Rhombus)} =  \sqrt { \bigg(\dfrac{24\:}{2}\bigg)^{2} + \bigg(\dfrac{10\:}{2}\bigg)^{2} } }\\

\qquad:\implies \tt {Side_{(Rhombus)} =  \sqrt { \bigg(\cancel{\dfrac{24\:}{2}}\bigg)^{2} + \bigg(\cancel {\dfrac{10\:}{2}}\bigg)^{2}   }}\\

\qquad:\implies \tt {Side_{(Rhombus)} =  \sqrt { \bigg(12\bigg)^{2} + \bigg( 5\bigg)^{2} }  }\\

\qquad:\implies \tt {Side_{(Rhombus)} =  \sqrt { 144  + 25  } }\\

\qquad:\implies \tt {Side_{(Rhombus)} =  \sqrt { 169   }}\\

⠀⠀⠀⠀⠀\underline {\boxed{\purple{ \mathrm {  Side_{(Rhombus)}= 13\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Side \:of\:Rhombus \:is\:\bf{13\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions