Math, asked by palaksingh489, 10 months ago

what is the side of a rhombus whose diagonal is D1 and D2​

Answers

Answered by MaheswariS
9

\bf\textsf{Concept used:}

\textsf{Diagonals of a rhombus bisect each other}

\textsf{Diagonals of a rhombus intersect at right angles}

\bf\textsf{Solution:}

\textsf{Let x be length of the side the of the rombus}

\textsf{By pythagoras theorem,}

\mathsf{x^2=(\dfrac{D_1}{2})^2+(\dfrac{D_2}{2})^2}

\mathsf{x^2=\dfrac{{D_1}^2}{4}+\dfrac{{D_2}}{4}}

\mathsf{x^2=\dfrac{{D_1}^2+{D_2}^2}{4}}

\textsf{Taking square root, we get}

\mathsf{x=\sqrt{\dfrac{{D_1}^2+{D_2}^2}{4}}}

\implies\bf\mathsf{x=\dfrac{1}{2}\sqrt{{D_1}^2+{D_2}^2}}

\therefore\bf\textsf{Length of the side of the rhombus having diagonals}

\mathsf{D1}\;\textsf{and}\;\mathsf{D2}\;\textsf{is}\;\mathsf{\dfrac{1}{2}\sqrt{{D_1}^2+{D_2}^2}}

Attachments:
Answered by vinaymudgile67
3

PLEASE MARK ME AS A BRAINLIEST

Attachments:
Similar questions