Math, asked by miguel205286, 9 months ago

What is the simplified base of the function f(x) = One-fourth (Root Index 3 StartRoot 108 EndRoot) Superscript x? 3 3RootIndex 3 StartRoot 4 EndRoot 6RootIndex 3 StartRoot 3 EndRoot 27

Answers

Answered by amitnrw
6

Given :   function f(x) = One-fourth (Root Index 3 StartRoot 108 EndRoot) Superscript x     f(x) =  (1/4) (∛108)ˣ

To find : Simplify  and choose correct option

Solution:

f(x) =  (1/4) (∛108)ˣ

108 = 2 * 2 * 3 * 3 * 3

=>  f(x) =  (1/4) (∛( 2 * 2 * 3 * 3 * 3 ))ˣ

=>  f(x) =  (1/4) (∛(4 * 3³ ))ˣ

=>  f(x) =  (1/4) (∛(4))ˣ  (∛( 3³))ˣ

=>  f(x) =  (1/4) (∛(4))ˣ  (3)ˣ  

=>  f(x) =  (1/4) (3∛(4))ˣ

∛108  = 3∛4  

Learn more:

Find cube root of 3*square root of 21 + 8 - Brainly.in

https://brainly.in/question/10693223

root 252 - 5 root 6 + root 294 - 3 root 1/6 = ? - Brainly.in

https://brainly.in/question/8117637

25/3√64+(256/625)^-1/4+1/(64/125)^2/3

https://brainly.in/question/3514085

Answered by 06clemensk
2

Answer:

b

Step-by-step explanation:

Similar questions