What is the simplified form of the following expression? 7 (RootIndex 3 StartRoot 2 x EndRoot) minus 3 (RootIndex 3 StartRoot 16 x EndRoot) minus 3 (RootIndex 3 StartRoot 8 x EndRoot)
Attachments:
Answers
Answered by
24
Answer:
Step-by-step explanation:
Attachments:
Answered by
4
7(∛2x ) - 3(∛18x) - 3(∛8x)= 7(∛2x ) - 6(∛x)
Given:
- 7(∛2x ) - 3(∛18x) - 3(∛8x)
To Find:
- Simplify the expression
Solution:
7(∛2x ) - 3(∛18x) - 3(∛8x)
Step 1:
Prime factorize 18 and 8
7(∛2x ) - 3(∛2*2*2*2x) - 3(∛2*2*2x)
Step 2:
Rewrite 2*2*2 as 2³
7(∛2x ) - 3(∛2³*2x) - 3(∛2³x)
Step 3:
Use ∛a³ = a
7(∛2x ) - 3*2(∛2x) - 3*2(∛x)
Step 4:
Multiply 3 and 2
7(∛2x ) - 6(∛2x) - 6(∛x)
Step 5:
Perform subtraction of like terms
7(∛2x ) - 6(∛x)
Hence, 7(∛2x ) - 3(∛18x) - 3(∛8x)= 7(∛2x ) - 6(∛x)
3rd option is correct
Similar questions