Math, asked by Varshini8891, 1 year ago

What is the simplified value of 1 + tan a tan (a/2)?

Answers

Answered by Rebecca118
2
1+tan a/2 is the answer...

hope it helps
Answered by tardymanchester
3

Answer:

1+(\text{tan} a )(\text{tan}\frac{a}{2})=seca

Step-by-step explanation:

Given : Expression - 1+(\text{tan} a )(\text{tan}\frac{a}{2})

To simplify : The given expression

Step 1- Write the expression

1+(\text{tan} a )(\text{tan}\frac{a}{2})

Step 2 - Solve the expression by applying property of trigonometry

=1+(\frac{sina}{cosa})(\frac{sin\frac{a}{2}}{cos\frac{a}{2}})

=\frac{(cosa)(cos\frac{a}{2})+(sina)(sin\frac{a}{2})}{(cosa)(cos\frac{a}{2})}

Step 3 - Applying (cosx)(cosy)+(sinx)(siny)= cos(x-y)

=\frac{cos(a-\frac{a}{2})}{(cosa)(cos\frac{a}{2})}

=\frac{cos(\frac{a}{2})}{(cosa)(cos\frac{a}{2})}

Step 4- cos\frac{a}{2} cancel out

=\frac{1}{cosa}

=seca

Therefore,  1+(\text{tan} a )(\text{tan}\frac{a}{2})=seca

Similar questions