Math, asked by yeetarmando4, 5 months ago

What is the simplified value of the expression below?

1.6 (negative 4.5 minus (negative 10.2) + 4)


–29.92
–17.12
15.52
29.92

Answers

Answered by mathdude500
2

Answer:

 \boxed{\bf \: 1.6[  - 4.5 - ( - 10.2) + 4] = 15.52 \: } \\

Step-by-step explanation:

Given expression is

\sf \: 1.6[  - 4.5 - ( - 10.2) + 4] \\

can be rewritten as

\sf \: =  \:  1.6(- 4.5 + 10.2 + 4) \\

\sf \: =  \:  1.6(- 4.5 + 14.2) \\

\sf \: =  \:  1.6(9.7) \\

\sf \: =  \:  1.6 \times 9.7 \\

\sf \: =  \:  15.52 \\

Hence,

\implies\sf \: \boxed{\bf \: 1.6[  - 4.5 - ( - 10.2) + 4] = 15.52 \: } \\

\rule{190pt}{2pt}

Additional Information

1. Commutative Property of Addition.

\sf \: \boxed{ \sf{ \:a + b = b + a \: }} \\  \\

2. Associative Property of Addition

\sf \: \boxed{ \sf{ \:(a + b) + c = a + (b + c) \: }} \\  \\

3. Additive Identity

\sf \: \boxed{ \sf{ \:x + 0 = 0 + x = x \: }} \\  \\

4. Commutative Property of Multiplication

\sf \: \boxed{ \sf{ \:a  \times  b = b  \times  a \: }} \\  \\

5. Associative Property of Multiplication

\sf \: \boxed{ \sf{ \:(a  \times  b)  \times  c = a  \times  (b  \times  c) \: }} \\  \\

6. Multiplicative Identity

\sf \: \boxed{ \sf{ \:x \times 1 = 1 \times x = x \: }} \\  \\

Similar questions