Math, asked by Anonymous, 9 months ago

What is the slant height of cone if the total surface area of cone is 17776 meter cube and the radius of cone is 56 m.?​

Answers

Answered by Anonymous
2

GIVEN:

\longrightarrow\sf{Total\: surface\: area \: of \: cone = 17776\: m^3 }⟶Totalsurfaceareaofcone=17776m3

\longrightarrow\textsf{Radius of the cone = 56 cm}⟶Radius of the cone = 56 cm

TO FIND:

\longrightarrow\sf\red{Slant \: height \: of \: the \: cone}⟶Slantheightofthecone

SOLUTION:

Let the slant height be "l"

We know that,

\longmapsto\underline{\boxed{\sf\green{Total\: surface\: area \: of \: cone = \pi r [ r + l ] }}}⟼Totalsurfaceareaofcone=πr[r+l]

Substitute the values.

\implies\sf 17776 = \pi r [ r + l ]⟹17776=πr[r+l]

\implies\sf 22/7 \times 56 [ 56 + l ] = 17776⟹22/7×56[56+l]=17776

\implies\sf 22 \times 8 [ 56 + l ] = 17776⟹22×8[56+l]=17776

\implies\sf 176 [ 56 + l ] = 17776⟹176[56+l]=17776

\implies\sf 56 + l = \dfrac{17776}{176}⟹56+l=17617776

\implies\sf 56 + l = 101⟹56+l=101

\implies\sf l = 101 - 56⟹l=101−56

\implies\sf l = 45⟹l=45

\therefore\underline\textsf{ The slant height of the cone is 45m. }∴ The slant height of the cone is 45m. 

Answered by SonalRamteke
2

Right circular cone

Solve for slant height

r Radius =56

A Surface area =

17776

Similar questions