Math, asked by Anonymous, 10 months ago

What is the slant height of cone if the total surface area of cone is 17776 meter cube and the radius of cone is 56 m.?​

Answers

Answered by Anonymous
2

GIVEN:

\longrightarrow\sf{Total\: surface\: area \: of \: cone = 17776\: m^3 }⟶Totalsurfaceareaofcone=17776m3

\longrightarrow\textsf{Radius of the cone = 56 cm}⟶Radius of the cone = 56 cm

TO FIND:

\longrightarrow\sf\red{Slant \: height \: of \: the \: cone}⟶Slantheightofthecone

SOLUTION:

Let the slant height be "l"

We know that,

\longmapsto\underline{\boxed{\sf\green{Total\: surface\: area \: of \: cone = \pi r [ r + l ] }}}⟼Totalsurfaceareaofcone=πr[r+l]

Substitute the values.

\implies\sf 17776 = \pi r [ r + l ]⟹17776=πr[r+l]

\implies\sf 22/7 \times 56 [ 56 + l ] = 17776⟹22/7×56[56+l]=17776

\implies\sf 22 \times 8 [ 56 + l ] = 17776⟹22×8[56+l]=17776

\implies\sf 176 [ 56 + l ] = 17776⟹176[56+l]=17776

\implies\sf 56 + l = \dfrac{17776}{176}⟹56+l=17617776

\implies\sf 56 + l = 101⟹56+l=101

\implies\sf l = 101 - 56⟹l=101−56

\implies\sf l = 45⟹l=45

\therefore\underline\textsf{ The slant height of the cone is 45m. }∴ The slant height of the cone is 45m. 

Answered by SonalRamteke
2

Right circular cone

Solve for slant height

r Radius =56

A Surface area =

17776

Similar questions