Math, asked by shiva4179, 1 year ago

What is the slope of the line perpendicular to the line passing through the points (-2, 3) and (2, 0?

Answers

Answered by nain31
23
 \huge \boxed{\mathcal{ANSWER}}

 \mathtt{Let \: the\: points\:be \:A (-2,3)\: and\: B(2,0)}

 \mathtt{When \: we \: have \: to \: find \: slope \: of} \mathtt{ line \: passing \: through \: two \: fixed \: points}
\mathtt{ Such\:that\: coordinates \: of \:those \: two \:points \:are}

 \bold{P(x_1,y_1) \: and Q(x_2,y_2)}

 \boxed{Slope \: m = \frac{y_1 - y_2}{x_1 - x_2}}

or,

 \boxed{Slope \: m = \frac{Difference \: of \: ordinates \: of \: the \: given \: point}{Diffrence \: in \: their \: abcissea }}

\mathtt{On \: applying \: the \: values}

 \boxed{Slope \: m = \frac{3 - 0}{(-2) - (2)}}

 \boxed{Slope \: m = \frac{3 }{-4}}

NOW,

 \mathtt{Let \: the\: slope\: of\: second\: line \:be \:m_2}

 \mathtt{Since,\: the \: given\:second\: line \:is \: perpendicular \: to } \mathtt{first \: line \: so \: their \: product \: will \: be \: one }

 \boxed{m \times m_2 =1}

 \mathtt{So,\: on \: placing \: value \: of \: first \:line }

 \bold {\frac{3}{-4} \times m_2 =1}

 \mathtt{On \: cross \: multiplication \: we \: get}

 \bold { 3\times m_2 =1 \times -4}

 \bold { m_2 =\frac{-4}{3}}

 \mathtt{So\: the \: slope \:of \: line \: perpendicular \: to } \mathtt{first \: line \: is \frac{-4}{3}}

Anonymous: Awesome✌✌✌✌
ParamPatel: MATHS AATI HAIN..... hmmm
tausif59: Formula konsa use ki ? °_°
Anonymous: ✌️✌️✌️✔️
Similar questions