Math, asked by cr1734430, 5 months ago

what is the slope of the line represented by 5x-12y=24?


vanshikaraghuvanshi: hii

Answers

Answered by Asterinn
11

We have to find out slope of the line represented by 5x-12y=24.

To find the slope of line we will transform given equation of line in the form of :- y = mx+c. Where m is slope of line.

 \rm \longrightarrow \: 5x-12y=24 \\  \\  \\ \rm \longrightarrow \: -12y=24 - 5x\\  \\  \\ \rm \longrightarrow \: 12y=5x - 24\\  \\  \\ \rm \longrightarrow \: y=(5x - 24) \frac{1}{12} \\  \\  \\ \rm \longrightarrow \: y= \dfrac{5x}{12}  - \dfrac{24}{12}  \\  \\  \\ \rm \longrightarrow \: y= \dfrac{5x}{12}  -2

Therefore, slope of line = (5/12)

Additional Information :

\rm \: Equation \: of  \: line \:  passing \: through  \: points \: (x_1 , y_1) \:  and \:  (x_2 , y_2) :

\tt \longrightarrow y -  y_1 = x-x_1\bigg( \dfrac{y_2-y_1}{ x_2-x_1} \bigg )

\rm \rightarrow \: here \: \bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg ) is \: slope \: of \: line.


Anonymous: Nice✌️
Answered by mathdude500
2

\huge {AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

✏️There are three methods to find the slope of given line :-

✏️Method :- 1

Reduce the given line to slope intercept form (y = mx + c) and then on comparing we get the value of m, which is slope of line.

─━─━─━─━─━─━─━─━─━─━─━─━─

✏️Method :- 2

If the equation of the line is ax + by + c = 0, then slope is

\bf \:m =  - \dfrac{coefficient \: of \: x}{coefficient \: of \: y}

─━─━─━─━─━─━─━─━─━─━─━─━─

Method :- 3

Differentiate the equation of line w. r. t. x and then slope is

\bf \:m \:  = \dfrac{dy}{dx}

─━─━─━─━─━─━─━─━─━─━─━─━─

✏️Rationale :-

─━─━─━─━─━─━─━─━─━─━─━─━─

{{ \boxed{{\bold\blue{✏By  \: Method :- 1 }}}}}

The equation of line is 5x - 12y = 24

\sf \:  ⟼ - 12y =  - 5x + 24

☆ Divide both sides by - 12, we get

\sf \:  ⟼y =  \dfrac{5}{12} x - 2

☆On comparing with y = mx + c, we get

\bf\implies \:m = \dfrac{5}{12}

{{ \boxed{\large{\bold\blue{Hence, \:  slope  \: of  \: line  \: is \: \dfrac{5}{12}  }}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

{{ \boxed{{\bold\blue{✏By  \: Method :- 2 }}}}}

The equation of line is 5x - 12y = 24

We know,

\bf \:m =  - \dfrac{coefficient \: of \: x}{coefficient \: of \: y}

\sf\implies \:m \:  =  - \dfrac{5}{ - 12}  = \dfrac{5}{12}

{{ \boxed{\large{\bold\blue{Hence, \:  slope  \: of  \: line  \: is \: \dfrac{5}{12}  }}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

{{ \boxed{{\bold\blue{✏By  \: Method :- 3 }}}}}

The equation of line is 5x - 12y = 24

☆Differentiate w. r. t. x, we get

\sf \:  \dfrac{d}{dx} (5x - 12y) = \dfrac{d}{dx} 24

\sf\implies \:5 - 12\dfrac{dy}{dx}  = 0

\sf\implies \: - 12\dfrac{dy}{dx}  =  - 5

\sf\implies \:\dfrac{dy}{dx}  = \dfrac{5}{12}

{{ \boxed{\large{\bold\blue{Hence, \:  slope  \: of  \: line  \: is \: \dfrac{5}{12}  }}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions