Math, asked by lacktmp01tyk, 4 months ago

What is the smallest integer that satisfies the inequality (x−3)/(x2−8x−20)>0

explain with steps pls


A. 10

B. 3

C. 0

D. -1

E. -2

Answers

Answered by mathdude500
1

Given Question :-

  • What is the smallest integer that satisfies the inequality (x−3)/(x^2−8x−20)>0

  • A. 10

  • B. 3

  • C. 0

  • D. -1

  • E. - 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:  ⟼ Consider \: \dfrac{x - 3}{ {x}^{2} - 8x - 20 }  > 0

\sf \:  ⟼\dfrac{x - 3}{ {x}^{2} - 10x  + 2x- 20 }  > 0

\sf \:  ⟼ \: \dfrac{x - 3}{x(x - 10) + 2(x - 10)}  > 0

\sf \:  ⟼ \: \dfrac{x - 3}{(x - 10)(x + 2)}  > 0

\sf \:  ⟼ \: \dfrac{(x - 3)(x + 2)(x - 10)}{ {(x - 10)}^{2}  {(x + 2)}^{2} }  > 0

\sf \:  ⟼ \: x  \: \epsilon \: ( - 2, \: 3) \:  \cup \: (10 \: , \infty \: )

☆ So, smallest integer satisfy the inequality is x = - 1.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence,  \: option \: ( d) \: is \: correct}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions