Math, asked by farzanamohammed22, 1 year ago

what is the solution for 10th qstn

Attachments:

Answers

Answered by satrunjay876
1

Answer:

Step-by-step explanation:

Brainly.in

What is your question?

Secondary SchoolMath 5+3 pts

Prove that 2(sin^6A + cos^6A) - 3(sin^4A+ cos^4A) +1 = 0

Report by Bijukumarmnj6312 26.11.2018

Answers

jashanjatana12274

Jashanjatana12274 Ambitious

here the answer................

Click to let others know, how helpful is it

3.0

13 votes

Comments (1) Report

anil6610

hello

Boffeemadrid Ambitious

Answer:

Step-by-step explanation:

The given equation is:

2(sin^{6}A+cos^{6}A)-3(sin^{4}A+cos^{4}A)+1

Using a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

⇒2(sin^{2}A+cos^{2}A)(sin^{4}A-sin^{2}Acos^{2}B+cos^{2}A)-3(sin^{4}A+cos^{4}A)+1

⇒2(1)(sin^{4}A-sin^{2}Acos^{2}B+cos^{4}A)-3(sin^{4}A+cos^{4}A)+1

⇒2sin^{4}A-2sin^{2}Acos^{2}B+2cos^{4}A-3sin^{4}A-3cos^{4}A+1

⇒-sin^{4}A-2sin^{2}Acos^{2}B-cos^{4}A+1

⇒-(sin^{4}A+2sin^{2}Acos^{2}B+cos^{4}A)+1

⇒-(sin^{2}A+cos^{2}B)^{2}+1

⇒-1+1=0= RHS

Hence proved.

Similar questions