what is the solution for 10th qstn
Answers
Answer:
Step-by-step explanation:
Brainly.in
What is your question?
Secondary SchoolMath 5+3 pts
Prove that 2(sin^6A + cos^6A) - 3(sin^4A+ cos^4A) +1 = 0
Report by Bijukumarmnj6312 26.11.2018
Answers
jashanjatana12274
Jashanjatana12274 Ambitious
here the answer................
Click to let others know, how helpful is it
3.0
13 votes
Comments (1) Report
anil6610
hello
Boffeemadrid Ambitious
Answer:
Step-by-step explanation:
The given equation is:
2(sin^{6}A+cos^{6}A)-3(sin^{4}A+cos^{4}A)+1
Using a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})
⇒2(sin^{2}A+cos^{2}A)(sin^{4}A-sin^{2}Acos^{2}B+cos^{2}A)-3(sin^{4}A+cos^{4}A)+1
⇒2(1)(sin^{4}A-sin^{2}Acos^{2}B+cos^{4}A)-3(sin^{4}A+cos^{4}A)+1
⇒2sin^{4}A-2sin^{2}Acos^{2}B+2cos^{4}A-3sin^{4}A-3cos^{4}A+1
⇒-sin^{4}A-2sin^{2}Acos^{2}B-cos^{4}A+1
⇒-(sin^{4}A+2sin^{2}Acos^{2}B+cos^{4}A)+1
⇒-(sin^{2}A+cos^{2}B)^{2}+1
⇒-1+1=0= RHS
Hence proved.