Math, asked by khushijadhav6125, 5 months ago

What is the solution for this :
√3x2+4x-7√3=0​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question ::

What is the solution for this :

 \sqrt{3 {x}^{2} }  + 4x - 7 \sqrt{3 } = 0

 \:   \bigstar \: \large  \underline{ \boxed{ \bf \color{lime}{answer}}}

 \:  \leadsto \bf{ \sqrt{3 {x}^{2} } + 4x - 7 \sqrt{3 }   = 0}

 \:   \\ \leadsto \underline{ \bf{by \: using \: determinant \: form}}

 \:  \:  \:  \:  \:  \leadsto \tt{ {b}^{2}  - 4ac}

 \:  \:  \:   \:  \leadsto \tt{ {(4)}^{2} - 4( \sqrt{3}  )( - 7 \sqrt{3} )}

 \:  \:  \:  \:  \leadsto \tt{16 + 28 \times 3}

 \:  \:  \:  \ \:  \leadsto \tt{16 + 84}

 \:  \:  \:  \leadsto \underline{ \boxed{ \bf{100}}}

 \:  \:  \:  \star \underline { \boxed{ \bf{by \: using \: formula \: method}}}

 \:  \implies \displaystyle \tt{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \:  \implies \displaystyle \tt{x =  \frac{ - 4 \pm \sqrt{100} }{2 \times  \sqrt{3} } }

 \:  \:  \implies \displaystyle \tt{x =  \frac{ - 4  \pm10}{2 \sqrt{3} }}

 \:  \:  \implies \displaystyle \tt{x =  \frac{ - 4 + 10}{2 \sqrt{3} }  =  \frac{6}{2 \sqrt{3} } }

 \:  \:  \:  \implies \displaystyle \tt{ \cancel \frac{6}{2}  \frac{1}{ \sqrt{3} }  =   \frac{3}{ \sqrt{3} } }

 \:  \:  \:  \implies \displaystyle \tt{ \cancel \frac{3}{ \sqrt{3} }  =  \sqrt{3} }

 \:  \:  \bigstar \underline { \boxed{ \bf{ \sqrt{3}  \: is \: one \: root}}}

 \:  \:  \implies \displaystyle \tt{x =  \frac{ - 4 - 10}{2 \sqrt{3} }  =  \frac{ - 14}{2 \sqrt{3} } }

 \:  \:  \implies \displaystyle \tt{ \cancel \frac{14}{2 \sqrt{3} } =  \frac{7}{ \sqrt{3} }  }

 \:  \:  \bigstar \underline{ \boxed{ \bf{ \frac{7}{ \sqrt{3} } is \: the \: second \: root}}}

 \:  \:  \red \bigstar \underline{ \boxed{ \sf{ \sqrt{3} \: and \:  \frac{7}{ \sqrt{3} }  is \: the \: roots \: of \: this \: quadratic \: equation}}}

Similar questions