Math, asked by Balu8133, 10 months ago

What is the solution of Cos ( 2 sin^-1X) ?

Answers

Answered by Anonymous
10

AnswEr :

Given Expression,

 \sf \: cos(2 {sin}^{ - 1} x)

Let us assume that,

 \sf \theta =  {sin}^{ - 1} x \\  \\  \implies \:  \sf \: x = sin \theta \: , \theta \in [ -  \dfrac{\pi}{2}   , \dfrac{\pi}{2} ]

The expression can be re-written as :

 \sf \longrightarrow \: cos(2 \theta) \\  \\  \longrightarrow \:  \sf \: cos {}^{2}  \theta - sin {}^{2}  \theta \\  \\  \longrightarrow \:  \sf \: 1 - 2 {sin}^{2}  \theta \\  \\  \longrightarrow \:   \sf \:1 -   2sin {}^{2} (\theta)  \\  \\   \large{\longrightarrow \:  \underline{ \boxed{ \sf \: 1 - 2x^2} }}

The solution of cos(arcsin(x)) would be 1 - 2x².

Answered by Rohith200422
7

Question:

What \: is \: the \: solution \: of \: the \: expression \: cos(2 {sin}^{ - 1} x)?

To find:

To \: find \: the \: solution \: of \: the \: expression.

Answer:

The \: solution \: is \: \underline\bold{1 - 2 {x}^{2} }

Step-by-step explanation:

cos(2 {sin}^{ - 1} x)

Now Assuming the value of θ,

\longrightarrow θ =  {sin}^{ - 1} x

\longrightarrow\underline\bold{x =  sinθ}

θ∈( -  \frac{\pi}{2} , \frac{\pi}{2} )

The expression can also be written as,

\longrightarrow cos2θ

 =  {cos}^{2}θ - 2{sin}^{2}θ

 = 1 - 2 {sin}^{2} θ

\boxed{= 1 - 2 {x}^{2}}

Solution \: of \: the \: expression \: is \: \underline\bold{1 - 2 {x}^{2} }

Similar questions