Math, asked by monjyotiboro, 1 month ago

what is the solution of the following differentiatial equation ln(dy/dx) +y=x. ?​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

Solve the differential equation :-

\rm :\longmapsto\: log\bigg(\dfrac{dy}{dx}\bigg)  + y = x

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\: log\bigg(\dfrac{dy}{dx}\bigg)  + y = x

can be rewritten as

\rm :\longmapsto\: log\bigg(\dfrac{dy}{dx}\bigg)  = x - y

We know,

\red{\rm :\longmapsto\:If \:  \:  log(y) = x \:  \: then \:  \: y =  {e}^{x}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {e}^{x - y}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {e}^{x}  \times  {e}^{ - y}

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ {e}^{x} }{ {e}^{y} }

Now, on separating the variables, we get

\rm :\longmapsto\: {e}^{y}dy =  {e}^{x}dx

On integrating both sides, we get

\rm :\longmapsto\: \displaystyle\int\rm {e}^{y}dy = \displaystyle\int\rm  {e}^{x}dx

\rm :\longmapsto\:  {e}^{y} = {e}^{x} + c

Additional Information :-

The linear Differential equation is of the form

\red{\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \: where \: p, \: q \:  \in \: f(x)}

Then

Step :- 1 Integrating Factor

\red{\rm :\longmapsto\:IF \:  =   \: {e} \: ^ {\displaystyle\int\rm pdx} }

and

Step :- 2 Solution is given by

\red{\rm :\longmapsto\:y \times IF = \displaystyle\int\rm (q \times IF )\: dx}

Similar questions