Math, asked by lokeshcpantlko, 3 months ago

What is the solution of
the given matrix
equation?
[3 1
5 2]
X =
[-1 2
3 1]​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\: \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}X = \: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix} -  - (1)

Let assume that,

\rm :\longmapsto\:A = \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}

and

\rm :\longmapsto\:B = \: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix}

So, equation (1) can be rewritten as

\rm :\longmapsto\:AX = B

 \red{ \bf \: Pre - multiply \: by \:  {A}^{ - 1} \: on \: both \: sides}

\rm :\longmapsto\: {A}^{ - 1} AX =  {A}^{ - 1} B

\rm :\longmapsto\: X =  {A}^{ - 1} B -  - (2)

Now,

As

\rm :\longmapsto\:A = \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}

\rm :\longmapsto\: |A|  = 6 - 5 = 1

\rm :\longmapsto\:adjA = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}

We know,

\rm :\longmapsto\: {A}^{ - 1}  = \dfrac{1}{ |A| } adjA

Hence,

\rm :\longmapsto\: {A}^{ - 1} = \dfrac{1}{1}  \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}

\bf\implies \: {A}^{ - 1}  = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix} -  -  - (3)

Now substituting all the values in equation (2), we get

\rm :\longmapsto\:X = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}\: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix}

\rm :\longmapsto\:X = \begin{bmatrix}  - 2 - 3 &   4- 1\\   5 + 9 &  - 10 + 3\end{bmatrix}\:

\bf :\longmapsto\:X = \begin{bmatrix}  -5 &   3\\  14 &  - 7\end{bmatrix}\:

Additional Information :-

\boxed{ \sf \:  {AA}^{ - 1}  =  {A}^{ - 1}A =I}

\boxed{ \sf \: A \: (adjA) = (adjA) \: A =  |A|I}

\boxed{ \sf \:  |adjA| =  { |A| }^{n - 1}}

\boxed{ \sf \:  |AB|  =  |A|  |B| }

Answered by muskanshi536
3

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\: \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}X = \: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix} -  - (1)

Let assume that,

\rm :\longmapsto\:A = \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}

and

\rm :\longmapsto\:B = \: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix}

So, equation (1) can be rewritten as

\rm :\longmapsto\:AX = B

 \red{ \bf \: Pre - multiply \: by \:  {A}^{ - 1} \: on \: both \: sides}

\rm :\longmapsto\: {A}^{ - 1} AX =  {A}^{ - 1} B

\rm :\longmapsto\: X =  {A}^{ - 1} B -  - (2)

Now,

As

\rm :\longmapsto\:A = \begin{bmatrix} 3 &  1\\ 5 & 2\end{bmatrix}

\rm :\longmapsto\: |A|  = 6 - 5 = 1

\rm :\longmapsto\:adjA = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}

We know,

\rm :\longmapsto\: {A}^{ - 1}  = \dfrac{1}{ |A| } adjA

Hence,

\rm :\longmapsto\: {A}^{ - 1} = \dfrac{1}{1}  \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}

\bf\implies \: {A}^{ - 1}  = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix} -  -  - (3)

Now substituting all the values in equation (2), we get

\rm :\longmapsto\:X = \begin{bmatrix} 2 &   - 1\\  - 5 & 3\end{bmatrix}\: \begin{bmatrix}  - 1 &  2\\ 3 & 1\end{bmatrix}

\rm :\longmapsto\:X = \begin{bmatrix}  - 2 - 3 &   4- 1\\   5 + 9 &  - 10 + 3\end{bmatrix}\:

\bf :\longmapsto\:X = \begin{bmatrix}  -5 &   3\\  14 &  - 7\end{bmatrix}\:

Additional Information :-

\boxed{ \sf \:  {AA}^{ - 1}  =  {A}^{ - 1}A =I}

\boxed{ \sf \: A \: (adjA) = (adjA) \: A =  |A|I}

\boxed{ \sf \:  |adjA| =  { |A| }^{n - 1}}

\boxed{ \sf \:  |AB|  =  |A|  |B| }

Similar questions