Math, asked by singhpawandeep9999, 8 months ago

what is the solution set of the inequation 3/(x) +2 ≥1​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\dfrac{3}{x}+2\,\geq\,1}

\textbf{To find:}

\textsf{Solution set of the given inequality}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{3}{x}+2\,\geq\,1}

\mathsf{\dfrac{3}{x}\,\geq\,1-2}

\mathsf{\dfrac{3}{x}\,\geq\,-1}

\textsf{Taking reciprocals,}

\mathsf{\dfrac{x}{3}\,\leq\,-1}

\mathsf{x\,\leq\,-3}

\implies\textsf{Any real number less than or equal to -3 will}

\textsf{satisfy the given inequality}

\therefore\mathsf{Solution\;set\;is\;(-\infty,-3]}

Answered by mahek77777
1

\textbf\red{Given:}

\mathsf{\dfrac{3}{x}+2\,\geq\,1}

\textbf\red{To find:}

\textsf{Solution set of the given inequality}

\textbf\red{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{3}{x}+2\,\geq\,1}

\mathsf{\dfrac{3}{x}\,\geq\,1-2}

\mathsf{\dfrac{3}{x}\,\geq\,-1}

\textsf\red{Taking reciprocals,}

\mathsf{\dfrac{x}{3}\,\leq\,-1}

\mathsf{x\,\leq\,-3}

\implies\textsf{Any real number less than or equal to -3 will}

\textsf{satisfy the given inequality}

\therefore\mathsf\red{Solution\;set\;is\;(-\infty,-3]}

Similar questions