Math, asked by deveshverma6965, 1 year ago

What is the solution to the following system? mc016-1.jpg x = –53, y = –2, z = 7 x = –41, y = –2, z = –7 x = –11, y = –2, z = –7 x = 1, y = –2, z = 7

Answers

Answered by hukam0685
8
Solution:

\left[\begin{array}{ccc}-53&amp;-2&amp;7\\-41&amp;-2&amp;-7\\-11&amp;-2&amp;-7\end{array}\right] <br /><br />\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=<br /><br />\left[\begin{array}{ccc}1\\-2\\7\end{array}\right]

Apply few Row elementary operations

R_{1}---> R_{1} -R_{2}

R_{2}---> R_{2} -R_{3}

\left[\begin{array}{ccc}-12&amp;0&amp;14\\-30&amp;0&amp;0\\-11&amp;-2&amp;-7\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] =<br />\left[\begin{array}{ccc}1\\-2\\7\end{array}\right]

So,

-30x = -2

x =1/15

And

-12x+14z =1

14z = 1+12/15

z= 27/15*14

z=9/70

and

-11x-2y-7z =7

-11/15 -2y -9/10 =7

-2y = 7+11/15+9/10

-2y =(105+110+135)/150

-2y= 350/150

y = -35/15*2

y=-7/6

Hope it helps you.
Answered by phillipinestest
2

Answer:

             \left[ \begin{matrix} -53 &amp; -2 &amp; 7 \\ -41 &amp; -2 &amp; -7 \\ -11 &amp; -2 &amp; -7 \end{matrix} \right] \left[ \begin{matrix} X \\ Y \\ Z \end{matrix} \right] = \left[ \begin{matrix} 1 \\ -2 \\ 7 \end{matrix} \right]

Apply Row Elementary Operation

{ R }_{ 1 }\Longrightarrow { R }_{ 1 }-{ R }_{ 2 }

{ R }_{ 2 }\Longrightarrow { R }_{ 2 }-{ R }_{ 3 }

\left[ \begin{matrix} -12 &amp; 0 &amp; 14 \\ -30 &amp; 0 &amp; 0 \\ -11 &amp; -2 &amp; -7 \end{matrix} \right] \left[ \begin{matrix} X \\ Y \\ Z \end{matrix} \right] = \left[ \begin{matrix} 1 \\ -2 \\ 7 \end{matrix} \right]

 So, from the second row the equation is

 -30 X = -2

X = 1/15

And  

-12 X + 14 Z = 1

14 Z = 1 + 12(1/15) = (15 + 12)/15

Z = 27/ (15*14) = 9/70

-11 X -2 Y – 7 Z = 7

-11/15 – 2 Y – 9/10 = 7

- 2 Y = 11/15 + 9/10 + 7

Y = -35/ (15*2)

Y = - 7/6

Similar questions