What is the specific heat of a metal if 50
cal of heat is needed to raise 6kg of the metal from 20°c to 62°c?
ans: [S= 0.198cal/ kg ° c]
Answers
Answer:
The specific heat capacity of a substance is the quantity of heat energy required to raise the temperature of 1 kg of the substance by 1°C. The symbol used for specific heat capacity is c and the units are J/(kg °C) or J/(kg K). (Note that these units may also be written as J kg–1 °C–1 or J kg–1 K–1).
Some typical values of specific heat capacity for the range of temperature 0°C to 100°C include:
Hence to raise the temperature of 1 kg of iron by 1°C requires 500 J of energy, to raise the temperature of 5 kg of iron by 1°C requires (500 × 5) J of energy, and to raise the temperature of 5 kg of iron by 40°C re- quires (500 × 5 × 40) J of energy, i.e. 100 kJ.
In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of c J/(kg °C), from temperature t1 °C to t2 °C is given by:
Q = mc(t2 – t1) joules
Explanation:The specific heat capacity of a substance is the quantity of heat energy required to raise the temperature of 1 kg of the substance by 1°C. The symbol used for specific heat capacity is c and the units are J/(kg °C) or J/(kg K). (Note that these units may also be written as J kg–1 °C–1 or J kg–1 K–1).
Some typical values of specific heat capacity for the range of temperature 0°C to 100°C include:
image
Hence to raise the temperature of 1 kg of iron by 1°C requires 500 J of energy, to raise the temperature of 5 kg of iron by 1°C requires (500 × 5) J of energy, and to raise the temperature of 5 kg of iron by 40°C re- quires (500 × 5 × 40) J of energy, i.e. 100 kJ.
In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of c J/(kg °C), from temperature t1 °C to t2 °C is given by:
Q = mc(t2 – t1) joules