Math, asked by prathamesh5646, 10 months ago

what is the splitting term of x^2-3x-1​

Answers

Answered by BrainlyPopularman
4

{ \bold{ \boxed{  \boxed{  \huge\red {ANSWER}}}}}

{ \bold{ \underline{Given  \:  \: function} :  - }} \\  \\ { \bold{ \pink{ :  \implies {x}^{2} - 3x - 1 = 0 }}} \\  \\ { \bold{ \underline{To \:  \:  find} :  - }} \\  { \bold{ \mathtt{ \pink{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: splitting \:  \: term}}}}

{ \bold{ \boxed{  \huge \red{ \mathtt{ \bigstar \: solution}}}}}

{ \bold{ \orange{ : \implies \:  {x}^{2}  - 3x - 1 = 0}}} \\  \\ { \bold{ \orange{ : \implies \:  {x}^{2}  - (3x) - 1 = 0 }}} \\  \\ { \bold{ \orange{ : \implies \: {x}^{2}  + ( \frac{ \sqrt{13}  - 3}{2} )x \:  -  ( \frac{ \sqrt{13}  + 3}{2}) x  -  1  = 0  }}} \\  \\ { \bold{ \orange{ : \implies \:(x  -  \frac{ 3 + \sqrt{13}  }{2}  )(x -  \frac{3 -  \sqrt{13} }{2} ) = 0 }}} \\  \\ { \bold{ \orange{ : \implies \: x =  \frac{3 +  \sqrt{13} }{2}   \:  \: and \:  \: x =  \frac{3 -  \sqrt{13} }{2} }}}

Similar questions