Math, asked by Shaan1203, 1 year ago

What is the square root of m6?

Answers

Answered by throwdolbeau
14

Answer:

\sf\large\boxed{\text{if}\ m\geq0,\ \text{then}\ \sf\sqrt{m^6}=m^3}\\\\\sf\boxed{\text{if}\sf\ m<0,\ \text{then}\ \sqrt{m^6}=-m^3}

Step-by-step explanation:

\sf\sqrt{m^6}=\sf\sqrt{m^{3\cdot2}}\sf\qquad\text{use}\ \sf\:(a^n)^m=a^{nm}\\\\=\sf\sqrt{(m^3)^2}\qquad\text{use}\ \sf\sqrt{a^2}=|a|\\\\=\sf\:|m^3|\\\\ \sf\text{if}\ m\geq0,\ \text{then}\ \sqrt{m^6}=m^3\\\\\sf\text{if}\ m<0,\ \text{then}\ \sqrt{m^6}=-m^3

Answered by AbhijithPrakash
10

\rule{300}{1.05}

Answer:

\sqrt{m^6}:\quad m^3

Step-by-step explanation:

\rule{300}{1.05}

\sqrt{m^6}

\rule{300}{1.05}

\sqrt{a}=a^{\dfrac{1}{2}}

=\left(m^6\right)^{\dfrac{1}{2}}

\rule{300}{1.05}

\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^{bc},\:\quad \mathrm{\:assuming\:}a\ge 0

=m^{6\cdot \dfrac{1}{2}}

\rule{300}{1.05}

6\cdot \dfrac{1}{2}

\rule{300}{0.5}

\mathrm{Convert\:element\:to\:fraction}:\quad \:6=\dfrac{6}{1}

=\dfrac{6}{1}\cdot \dfrac{1}{2}

\rule{300}{0.5}

\mathrm{Cross-cancel\:common\:factor:}\:2

=\dfrac{3}{1}

\rule{300}{0.5}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{a}{1}=a

=3

\rule{300}{1.05}

=m^3

\rule{300}{1.05}

Similar questions