Chemistry, asked by rk00000000, 1 year ago

what is the structure of c7h140 in cyclic compound​

Answers

Answered by Itzkrushika156
0

Answer:

Explanation:

cyclic compound (ring compound) is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon (i.e., are carbocycles), none of the atoms are carbon (inorganic cyclic compounds), or where both carbon and non-carbon atoms are present (heterocyclic compounds). Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic, in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size (e.g., <17 total atoms) numbers in the many billions.

Cyclic compound examples: All-carbon (carbocyclic) and more complex natural cyclic compounds.

Ingenol, a complex, terpenoid natural product, related to but simpler than the paclitaxel that follows, which displays a complex ring structure including 3-, 5-, and 7-membered non-aromatic, carbocyclic rings.

Structural introduction

Edit

A cyclic compound or ring compound is a compound at least some of whose atoms are connected to form a ring.[1]:unknown[page needed] Rings vary in size from 3 to many tens or even hundreds of atoms. Examples of ring compounds readily include cases where:

all the atoms are carbon (i.e., are carbocycles),

none of the atoms are carbon (inorganic cyclic compounds),[2] or where

both carbon and non-carbon atoms are present (heterocyclic compounds).

Common atoms can (as a result of their valences) form varying numbers of bonds, and many common atoms readily form rings. In addition, depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, cyclic compounds may be aromatic or non-aromatic; in the case of non-aromatic cyclic compounds, they may vary from being fully saturated to having varying numbers of multiple bonds. As a consequence of the constitutional variability that is thermodynamically possible in cyclic structures, the number of possible cyclic structures, even of small size (e.g., <17 atoms) numbers in the many billions.[3]

Moreover, the closing of atoms into rings may lock particular functional group–substituted atoms into place, resulting in stereochemistry and chirality being associated with the compound, including some manifestations that are unique to rings (e.g., configurational isomers);[4] As well, depending on ring size, the three-dimensional shapes of particular cyclic structures—typically rings of 5-atoms and larger—can vary and interconvert such that conformational isomerism is displayed.

Similar questions