Math, asked by digansh1741, 1 month ago

What is the sum of the roots of 3x²-4x-7=0

Answers

Answered by amansharma264
10

EXPLANATION.

Sum of the roots.

⇒ 3x² - 4x - 7 = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = - (-4/3) = 4/3.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = (-7/3).

                                                                                                                 

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by Anonymous
77

\rm\large \bigstar \: {\underline{\underline\color{darkblue}{Given:-}}}

\rm \dashrightarrow{Sum  \: of  \: the \:  roots = 3 {x}^{2}  - 4x - 7 = 0.}

\rm\large \bigstar \: {\underline{\underline\color{darkblue}{Find:-}}}

  • Sum of the roots of 0 .

\rm\large \bigstar \: {\underline{\underline\color{darkblue}{Solution:-}}}

\rm \mapsto{sum  \: of  \: the \:  product \:  of \:  polynomial}

\rm\mapsto{a {x}^{2} +bx+c is  \: given \:  by  \frac{ - b}{a}  \: . \:  \frac{c}{a}. }

Now,

➛ \:  \alpha \:  +   \beta  =  \frac{ - b}{c}

➛ \:  \alpha  +  \beta   \: =  \:  - ( \frac{4}{3} )

➛ \:  \:  \frac{4}{3}

Now finding zeroes of the polynomial,

➛ \:  \alpha \:   \beta  =  \frac{c}{a}

➛ \rm\purple  {  \:  \: \alpha  \:  \beta  =  \frac{ - 7}{3}}

_______________________________

Learn more :-

\begin{gathered} \: \: \: \: \: \: \begin{gathered}\boxed {\begin{array}{cc}\sf formula&amp;\\\frac{\qquad }{ }{}\\\sf \: Sum =  \frac{ - b}{a}  &amp;\ \\\\\sf roots =  \frac{c}{a}  &amp;\\\\\sf \: Quadrtic \: equation = a {x}^{2}  + bx + c = 0  \ \\     \\\sf   Roots \: for \: quadrtic  \: equation = \frac{ - b  +  -  \sqrt{ {b}^{2} } - 4ac }{2a}  &amp;\end{array}}\end{gathered}\end{gathered}

@Shivam

Similar questions