What is the sum of this series?
1, 3, 5, 7, 9, ...... 99?
Answers
Answered by
28
Given series is an A. P because the common difference is 2. ( 3 - 1 =2, 5 - 3 = 2 )
First term, a = 1, C. D = 2.
An or l ( last term ) = 99.
An = a + ( n - 1 ) d
99 = 1 + ( n - 1) 2
99 - 1 = 2n - 2
98 +2 = 2n
100 =2n
n = 100 /2 = 50
For sum of the series,
=> Sn = n ( l + d ) / 2
S( 50 ) = 50 ( 99 +2 ) / 2
S ( 50 ) = 25 × 101
S ( 50 ) = 2525.
First term, a = 1, C. D = 2.
An or l ( last term ) = 99.
An = a + ( n - 1 ) d
99 = 1 + ( n - 1) 2
99 - 1 = 2n - 2
98 +2 = 2n
100 =2n
n = 100 /2 = 50
For sum of the series,
=> Sn = n ( l + d ) / 2
S( 50 ) = 50 ( 99 +2 ) / 2
S ( 50 ) = 25 × 101
S ( 50 ) = 2525.
Answered by
10
Answer:
Step-by-step explanation:
hope it helps
Attachments:
Similar questions