What is the 'tens' digit of 2013^2-2013? (^ as in raised in power)
(If you could explain too what the 'tens digit is because I'm not a native speaker and cannot understand it. I would really appreciate it! )
Answers
Understanding
First, we are in base 10. Each digit value we write has powers of multiplied to it.
For example, . If is multiplied, it is the tens digit. Here tens digit value is 2.
Sol.
Now let's solve our problem.
When we find a product of two integers, the first digit comes from below the tens digit.
Similarly, the tens digit comes from below the hundreds digit.
Hence the tens digit is .
Question
(I'm really sorry for leaving the wrong answer to your question.)
The numbers p,q,r, and s satisfy the following equations:
- p+2q+3r+4s=k
- 4p=3q=2r=s
What is the smallest value of 'k' for which p,q,r and are all positive integers?
Sol.
Here, is a multiple of 12 because of factors 4, 3, 2.
The least value of , hence other values are .
(A-20//B-24//C-25//D-77//E-154)
Hope you understood!
Question:-
- What is the 'tens' digit of 2013^2-2013?
To Find:-
- Find tens place.
Solution:-
Here ,
Firstly , we need to find product of two integers. Then after we need to find the number.
Now ,
Hence ,
- The tens digit is 5.