What is the the value of tan(45°+theta) +cot(45-theta)...?
Answers
Answered by
2
By applying tan(45+ theta) + cot(45+ theta) we get amswer =-2
mani193:
This is wrong answer plz check again for this question options are also given 1)2tan 2)2cot 3)1 4)0
Answered by
3
[(tan45+tanb)/1-tan45tanb]+[(cot45cotb+1)/cotb-cot45] b=theta
=[1+tanb/1-tanb]+[cotb+1/cotb-1]
=[1+tanb/1-tanb]+[(1/tanb)+1/(1/tanb)-1]
= [1+tanb/1-tanb]+[1+tanb/1-tanb]
=2×[1+tanb/1-tanb]
=[1+tanb/1-tanb]+[cotb+1/cotb-1]
=[1+tanb/1-tanb]+[(1/tanb)+1/(1/tanb)-1]
= [1+tanb/1-tanb]+[1+tanb/1-tanb]
=2×[1+tanb/1-tanb]
Similar questions