What is the theory of relativity? Explain from daily life example.
Answers
Answer:
Relativity is one of the most famous scientific theories of the 20th century, but how well does it explain the things we see in our daily lives?
Formulated by Albert Einstein in 1905, the theory of relativity is the notion that the laws of physics are the same everywhere. The theory explains the behavior of objects in space and time, and it can be used to predict everything from the existence of black holes, to light bending due to gravity, to the behavior of the planet Mercury in its orbit.
The theory is deceptively simple. First, there is no "absolute" frame of reference. Every time you measure an object's velocity, or its momentum, or how it experiences time, it's always in relation to something else. Second, the speed of light is the same no matter who measures it or how fast the person measuring it is going. Third, nothing can go faster than light. [Twisted Physics: 7 Mind-Blowing Findings]
The implications of Einstein's most famous theory are profound. If the speed of light is always the same, it means that an astronaut going very fast relative to the Earth will measure the seconds ticking by slower than an Earthbound observer will — time essentially slows down for the astronaut, a phenomenon called time dilation.
Explanation:
Answer:
The theory explains the behavior of objects in space and time, and it can be used to predict everything from the existence of black holes, to light bending due to gravity, to the behavior of the planet Mercury in its orbit. ... Any object in a big gravity field is accelerating, so it will also experience time dilation
Relativity is one of the most famous scientific theories of the 20th century, but how well does it explain the things we see in our daily lives?
Formulated by Albert Einstein in 1905, the theory of relativity is the notion that the laws of physics are the same everywhere. The theory explains the behavior of objects in space and time, and it can be used to predict everything from the existence of black holes, to light bending due to gravity, to the behavior of the planet Mercury in its orbit.
The theory is deceptively simple. First, there is no "absolute" frame of reference. Every time you measure an object's velocity, or its momentum, or how it experiences time, it's always in relation to something else. Second, the speed of light is the same no matter who measures it or how fast the person measuring it is going. Third, nothing can go faster than light.
The implications of Einstein's most famous theory are profound. If the speed of light is always the same, it means that an astronaut going very fast relative to the Earth will measure the seconds ticking by slower than an Earthbound observer will — time essentially slows down for the astronaut, a phenomenon called time dilation.