Math, asked by shivam123443348, 1 year ago

what is the total number of solid sphere each diameter 9 cm. which could be moulded to form a solid metal cylinder of a length 94.5 and diameter 6 cm?


solve this plzzzzzzzz

Answers

Answered by abdul143
5
 \pink{ \underline{\huge \frak{✓ \: Hola! \: Mate \:✓ }}} \: \\ \\ \: \: \: \: \: \red {\boxed{\mathbb{ \star \: Here \: Is \: Your \: Answer \: \star}}}

 <b> <i>

The volume of sphere is equal to
 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \huge \frac{4}{3}\pi {r}^{3}
Given :

The diameter =9
Radius=d/2=9/2=4.5

 \frac{4}{ \cancel{3 \: \: }} \times \frac{22}{7} \times \cancel{ 4.5}^{1.5} \times 4.5 \times 4.5 = 381.81cm^{3}
Then, As we know the the volume of cylinder
 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \huge \rightarrow \huge\pi {r}^{2} h
Given:
Length=94.5,R=d/2=6/2=3

 \frac{22}{ \cancel{7 \: \: }} \times {3}^{2} \times \cancel{94.5}^{13.5} = 2673 {cm}^{3}
Then,

 \tiny Total \: no. \: spheres = \frac{the \:volume \: of \: solid \: cylinder}{the \: volume \: of \:each \: shpere} \\ \\
 \huge= \frac{2673}{381.81} = 7 \: \small{sphere's} \\ \\\tiny\rightarrow \: so, \: \: that \: the \: solid \: cylinder \: can \: contains \: 7 \: spheres \: only.
 \purple{ \huge \mathcal{HOPE \: IT'S \: HELPFUL}}

shivam123443348: marvellous solution....... keep it up........
Similar questions