Physics, asked by Wajahatsayeed, 7 months ago

what is the total resistance of 2 ohms, 3 ohm, 5 ohm in parallel connection ​

Answers

Answered by anshikaverma29
2

Let the total resistance be R .

r_1=2ohm\\\\r_2=3ohm\\\\r_3=5ohm\\\\

For parallel connection resistors formula is :

\frac{1}{R}=\frac{1}{r_1}+ \frac{1}{r_2} +\frac{1}{r_3}

\frac{1}{R}=\frac{1}{2} +\frac{1}{3} +\frac{1}{5} \\\\

\frac{1}{R}=\frac{15+10+6}{30}  \\\\\frac{1}{R} =\frac{31}{30}\\\\

R=\frac{30}{31}

Hence , R = 30/31 Ω .

Answered by ItzAditt007
0

AnswEr:-

The Required Answer is 0.96 ohm (Approx).

ExplanaTion:-

Given Resistors:-

  • Of Resistance 2, 3 and 5 ohm.

  • All three resistors are connected in parallel.

To Find:-

  • The Equivalent Resistance i.e. total resistance.

Formula Used:-

In A parallel Combination,

\bf\longrightarrow \boxed{ \bf \frac{1}{R_{eq}} =  \frac{1}{R_1}  +  \frac{1}{R_2} ...... \frac{1}{R_n}}.

Where,

  • Req = Equivalent Resistance.

  • R1, R2 are the given Resistors.

So Here,

  • Req = ?? [to find].

  • R1 = 2 ohm.

  • R2 = 3 ohm.

  • R3 = 5 ohm.

Now,

By putting the above values in the formula we get,

\tt\mapsto \dfrac{1}{R_{eq}}  =  \dfrac{1}{R_1}  +  \dfrac{1}{R_2}  +  \dfrac{1}{R_3} .

\tt\mapsto\dfrac{1}{R_{eq}} =   \bigg(\dfrac{1}{2}  +  \dfrac{1}{3}  +  \dfrac{1}{5} \bigg) \:  \: ohm

\tt\mapsto\dfrac{1}{R_{eq}} =   \bigg(\dfrac{15 + 10 +6 }{30} \bigg) \:  \: ohm .

 \rm \big(by \:  \: taking \:  \: lcm \big).

\tt\mapsto\dfrac{1}{R_{eq}} =   \bigg(\dfrac{31}{30} \bigg) \: ohm .

\tt\mapsto R_{eq} =  \bigg( \dfrac{30}{31} \bigg) \:  \: ohm .

 \red{\tt\mapsto{ \boxed{ \bf R_{eq} = 0.96 \: ohm}}} \:  \:  \big( \rm approx \big).

Therefore the total resistance is 0.96 ohm.

Similar questions