Math, asked by anshyadav66, 9 months ago

What is the total surface area of a cone having radius 35 cm and height 21 cm.
a) 6100 sq.cm. b) 2601 sq.cm. c) 6160 sq.cm d) 3240 sq.cm.​

Answers

Answered by Ridvisha
104
{ \underline{ \red{ \tt{ \huge{ \underline{QUESTION }}}}}}



▪ What is th e total surface area of the cone having radius 35 cm and height 21 cm.


a) 6100 sq. cm

b) 2601 sq. cm

c) 6160 sq. cm

d) 3240 sq. cm




{ \underline{ \red{ \tt{ \huge{ \underline{SOLUTION }}}}}}



{ \star{ \purple{ \bold{ \: \: \: GIVEN }}}}



{ \pink{ \underline{ \underline{ \sf{Dimension \: of \: cone}}}}}



{ \blue{ \sf{ radius= 35 \: cm}}} \\ \\ { \blue{ \sf{height = 21 \: cm}}}


{ \bold{ \underline{ \green{Total \: Surface \: Area}}}} \\ \\ { \boxed{ \boxed{ \tt{ \green{TSA = \pi \: r l + \pi \: {r}^{2} }}}}} \\ \\ { \sf{where}} \\ \\ { \sf{ \green{r = radius \: of \: the \: cone}}} \\ \\ { \sf{ \green{l = slant \: height \: of \: the \: cone}}}




• Putting the given values in the formula....



{ \tt{ \pink{TSA  = \pi \times 35cm \times 21cm \: + \: \pi \: {(35 cm)}^{2} }}} \\ \\ { \implies{\tt{ \pink{TSA  = 35\pi \: (21 + 35) \: {cm}^{2} }}}} \\ \\ { \implies{ \tt{ \pink{TSA  = \frac{22}{7} \times 35 \times 56 \: {cm}^{2} }}}} \\ \\ { \tt{ \implies{\pink{TSA  = 22 \times 5 \times 56 \: {cm}^{2} }}}}




{ \implies{ \boxed{ \boxed{ \red{ \sf{ \: Total \: Surface \: Area = 6160 \: {cm}^{2} \: }}}}}}



thus,

☆ option (c) is correct



{ \bigstar{ \underline{ \purple{ \bold{ \: \: \: \: Other \: formulas \: for \: CONE}}}}}



{ \sf{(1)}{ \underline{\: Volume}}} \\ \\ { \boxed{ \green{ \sf{V = \frac{1}{3} \pi \: {r}^{2} h}}}}



{ \sf{(2){ \underline{ \: Lateral \: Area}}}} \\ \\ { \sf{ \boxed{ \green{Al = \pi \: rl}}}}




{ \sf{(3){ \underline{ \: Base \: Area}}}} \\ \\ { \boxed{ \sf{ \green{Ab = \pi \: {r}^{2} }}}}




{ \sf{(4){ \underline{ \: Height}}}} \\ \\ { \boxed{ \green{ \sf{h = 3 \times \frac{V }{\pi \: {r}^{2} } }}}}




{ \sf{(5){ \underline{ \: Radius}}}} \\ \\ { \boxed{ \green{ \sf{r = \sqrt{3 \times \frac{V}{\pi \: h}}}}} }



{ \sf{(6){ \underline{ \: Slant \: height}}}} \\ \\ { \boxed{ \green{ \sf{l = \sqrt{ {r}^{2} + {h}^{2} } }}}}
Answered by llAngelicQueenll
1

{ \underline{  \huge{ \underline{SOLUTION }}}}

{ \star{ \bold{ \: \: \: GIVEN }}}

{ \underline{ \underline{ \sf{Dimension \: of \: cone}}}}

{  \sf{ radius= 35 \: cm}}} \\ \\ { \blue{ \sf{height = 21 \: cm}}

{ \bold{ \underline{ Total \: Surface \: Area}}} \\  { { \boxed{ \tt{ \green{TSA = \pi \: r l + \pi \: {r}^{2} }}}} \\ \\ { \sf{where}} \\ \\ { \sf{ \green{r = radius \: of \: the \: cone}}} \\ \\ { \sf{ \green{l = slant \: height \: of \: the \: cone}}}

• Putting the given values in the formula....

{ \tt{ \pink{TSA  = \pi \times 35cm \times 21cm \: + \: \pi \: {(35 cm)}^{2} }}} \\ \\ { \implies{\tt{ \pink{TSA  = 35\pi \: (21 + 35) \: {cm}^{2} }}}} \\ \\ { \implies{ \tt{ \pink{TSA  = \frac{22}{7} \times 35 \times 56 \: {cm}^{2} }}}} \\ \\ { \tt{ \implies{\pink{TSA  = 22 \times 5 \times 56 \: {cm}^{2} }}}}

{ \implies{ \boxed{ \boxed{ \red{ \sf{ \: Total \: Surface \: Area = 6160 \: {cm}^{2} \: }}}}}}

thus,

☆ option (c) is correct

{ \bigstar{ \underline{ \purple{ \bold{ \: \: \: \: Other \: formulas \: for \: CONE}}}}}

{ \sf{(1)}{ \underline{\: Volume}}} \\ \\ { \boxed{ \green{ \sf{V = \frac{1}{3} \pi \: {r}^{2} h}}}}

{ \sf{(2){ \underline{ \: Lateral \: Area}}}} \\ \\ { \sf{ \boxed{ \green{Al = \pi \: rl}}}}

{ \sf{(3){ \underline{ \: Base \: Area}}}} \\ \\ { \boxed{ \sf{ \green{Ab = \pi \: {r}^{2} }}}}

{ \sf{(4){ \underline{ \: Height}}}} \\ \\ { \boxed{ \green{ \sf{h = 3 \times \frac{V }{\pi \: {r}^{2} } }}}}

{ \sf{(5){ \underline{ \: Radius}}}} \\ \\ { \boxed{ \green{ \sf{r = \sqrt{3 \times \frac{V}{\pi \: h}}}}} }

{ \sf{(6){ \underline{ \: Slant \: height}}}} \\ \\ { \boxed{ \green{ \sf{l = \sqrt{ {r}^{2} + {h}^{2} } }}}}

Similar questions