What is the Value if Sin3thita=? please try it
Answers
Answered by
3
There are several methods to show this. One of the basic method is by using the some of the simplest formulae of trigonometry. So let's start.
You must be aware of the formula
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinBcos(A+B)=cosAcosB−sinAsinB
Now first find sin2xsin2x using the above formula.
Replace both A and B with xx in 1st formula
We get sin(x+x)=sinxcosx+cosxsinx.sin(x+x)=sinxcosx+cosxsinx.
Therefore sin2x=2sinxcosx…(1)sin2x=2sinxcosx…(1)
Similarly
cos2x=cos2x−sin2xcos2x=cos2x−sin2x
Using sin2x+cos2x=1…(2)sin2x+cos2x=1…(2)
cos2x=2cos2x−1cos2x=2cos2x−1
Again using eqn (2)(2)
cos2x=1−2sin2x…(3)cos2x=1−2sin2x…(3)
Now for sin3xsin3x replace A and B with xx and 2x2x or vice versa in the first formula.
We get sin(x+2x)=sinxcos2x+cosxsin2xsin(x+2x)=sinxcos2x+cosxsin2x
Subtituting the values of sin2xsin2x and cos2xcos2xwe get
sin3x=(sinx)(1−2sin2x)+(cosx)(2sinxcosx)sin3x=(sinx)(1−2sin2x)+(cosx)(2sinxcosx)
Using eqn (2)(2) and rearranging terms we get
sin3x=3sinx−4sin3xsin3x=3sinx−4sin3x
Similarly
cos3x=4cos3x−3cosxcos3x=4cos3x−3cosx
There's a second interesting Method and it involves complex number. For that you must know De Moivre's theorem which can be stated as
(cosθ+isinθ)n=(cosnθ+isinnθ)(cosθ+isinθ)n=(cosnθ+isinnθ)
So (cosθ+isinθ)3=cos3θ−isin3θ+3icos2θsinθ−3sin2θcosθ(cosθ+isinθ)3=cos3θ−isin3θ+3icos2θsinθ−3sin2θcosθ
Now using eqn (2)(2) we get
(cos3θ+isin3θ)=(4cos3θ−3cosθ)+i(3sinθ−4sin3θ)(cos3θ+isin3θ)=(4cos3θ−3cosθ)+i(3sinθ−4sin3θ)
When two complex number are equal then their real and imaginary part are also equal
Hence we get
cos3θ=4cos3θ−3cosθcos3θ=4cos3θ−3cosθ
sin3θ=3sinθ−4sin3θsin3θ=3sinθ−4sin3θ
I hope it helps
You must be aware of the formula
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinBcos(A+B)=cosAcosB−sinAsinB
Now first find sin2xsin2x using the above formula.
Replace both A and B with xx in 1st formula
We get sin(x+x)=sinxcosx+cosxsinx.sin(x+x)=sinxcosx+cosxsinx.
Therefore sin2x=2sinxcosx…(1)sin2x=2sinxcosx…(1)
Similarly
cos2x=cos2x−sin2xcos2x=cos2x−sin2x
Using sin2x+cos2x=1…(2)sin2x+cos2x=1…(2)
cos2x=2cos2x−1cos2x=2cos2x−1
Again using eqn (2)(2)
cos2x=1−2sin2x…(3)cos2x=1−2sin2x…(3)
Now for sin3xsin3x replace A and B with xx and 2x2x or vice versa in the first formula.
We get sin(x+2x)=sinxcos2x+cosxsin2xsin(x+2x)=sinxcos2x+cosxsin2x
Subtituting the values of sin2xsin2x and cos2xcos2xwe get
sin3x=(sinx)(1−2sin2x)+(cosx)(2sinxcosx)sin3x=(sinx)(1−2sin2x)+(cosx)(2sinxcosx)
Using eqn (2)(2) and rearranging terms we get
sin3x=3sinx−4sin3xsin3x=3sinx−4sin3x
Similarly
cos3x=4cos3x−3cosxcos3x=4cos3x−3cosx
There's a second interesting Method and it involves complex number. For that you must know De Moivre's theorem which can be stated as
(cosθ+isinθ)n=(cosnθ+isinnθ)(cosθ+isinθ)n=(cosnθ+isinnθ)
So (cosθ+isinθ)3=cos3θ−isin3θ+3icos2θsinθ−3sin2θcosθ(cosθ+isinθ)3=cos3θ−isin3θ+3icos2θsinθ−3sin2θcosθ
Now using eqn (2)(2) we get
(cos3θ+isin3θ)=(4cos3θ−3cosθ)+i(3sinθ−4sin3θ)(cos3θ+isin3θ)=(4cos3θ−3cosθ)+i(3sinθ−4sin3θ)
When two complex number are equal then their real and imaginary part are also equal
Hence we get
cos3θ=4cos3θ−3cosθcos3θ=4cos3θ−3cosθ
sin3θ=3sinθ−4sin3θsin3θ=3sinθ−4sin3θ
I hope it helps
Niksnikita:
superb..thnkuu
Answered by
0
...may be we will use the formula of 'tripple one..'
but i don't know the formula......
so sryy
:)
but i don't know the formula......
so sryy
:)
Similar questions