Math, asked by gangadevi1609, 5 months ago

what is the value of 1/ 1+root 2 +1/root 2+ root 3 + 1/root 3 + root 4 .... upto 15 terms

Answers

Answered by Anonymous
12

To FinD :

 \rightsquigarrow \sf \:  \frac{1}{ \sqrt{1} +  \sqrt{2}  }  +  \frac{1}{ \sqrt{2}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \dots  + \frac{1}{ \sqrt{14}  +  \sqrt{15} }  =  {?} \\

SolutioN :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \frac{1}{ \sqrt{1} +  \sqrt{2}  }  +  \frac{1}{ \sqrt{2}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \dots  + \frac{1}{ \sqrt{14}  +  \sqrt{15} }   {} \\

 \implies \sf \:  \frac{ \sqrt{1}  -  \sqrt{2} }{( \sqrt{1} +  \sqrt{2})( \sqrt{1}  -  \sqrt{2} )  }  +  \frac{ \sqrt{2} -  \sqrt{3}  }{ (\sqrt{2} +  \sqrt{3})( \sqrt{2}  -  \sqrt{3})   }  +  \dots +   \frac{ \sqrt{14} -  \sqrt{15}  }{( \sqrt{14} +  \sqrt{15}  )( \sqrt{14}  -  \sqrt{15}) }  \\

 \implies \sf \:  \frac{ \sqrt{1} -  \sqrt{2}  }{ - 1}  +  \frac{ \sqrt{2}  -  \sqrt{3} }{ - 1}   + \dots +  \frac{ \sqrt{14} -  \sqrt{15}  }{ - 1}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore{ \underline{ \boxed{\sf{ \sqrt{15}  - 1}}}}

______________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions