what is the value of 1+cos2x
Answers
Answered by
0
Since, cos2x=cos2x−sin2x
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x)
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,sin2x+cos2x=1
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,sin2x+cos2x=1 Therefore, sin2x=1−cos2x
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,sin2x+cos2x=1 Therefore, sin2x=1−cos2x Substituting it in 1−cos2x , we get,
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,sin2x+cos2x=1 Therefore, sin2x=1−cos2x Substituting it in 1−cos2x , we get,1−cos2x=sin2x+sin2x
Since, cos2x=cos2x−sin2x 1−cos2x=1−(cos2x−sin2x) 1−cos2x=1−cos2x+sin2x We know,sin2x+cos2x=1 Therefore, sin2x=1−cos2x Substituting it in 1−cos2x , we get,1−cos2x=sin2x+sin2x 1−cos2x=2sin2x
Answered by
1
Answer:
using formula
1+cos2x = 2cos²x
Similar questions