What is the value of (1 + tan²θ) (1 − sin θ) (1 + sin θ)?
Answers
Answered by
3
Answer:
The value of (1 + tan²θ) (1 − sin θ) (1 + sin θ) is 1.
Step-by-step explanation:
Given : (1 + tan²θ) (1 − sin θ) (1 + sin θ)
= (1 + tan²θ) [(1 − sin θ) (1 + sin θ)]
= (1 + tan²θ) (1 − sin² θ)
[By using identity , (a + b) (a - b) = a² - b²]
= sec² θ (1 − sin² θ)
[By using an identity, 1 + tan² θ = sec² θ]
= sec² θ (cos² θ)
[By using the identity, (1 - sin²θ) = cos²θ]
= 1/cos²θ × cos²θ
[By using the identity, secθ = 1/ cosθ]
= 1
(1 + tan²θ) (1 − sin θ) (1 + sin θ) = 1
Hence, the value of (1 + tan²θ) (1 − sin θ) (1 + sin θ) is 1.
HOPE THIS ANSWER WILL HELP YOU…
Answered by
2
According to the Question:
Refer to the attachment for step-by-step-explanation with answer.
⇒(1 + tan²θ) (1 − sin θ) (1 + sin θ) = 1
Hence Proved! ___________[ANSWER]
Attachments:
Similar questions