Math, asked by kebohissang, 4 months ago

what is the value of ( 1+tan2O)+1+cot2O)​

Answers

Answered by Anonymous
8

Answer:

Explanation:

Given :

  • (1 + tan²A)/(1 + cot²A)

To Find :

  • The value of (1 + tan²A)/(1 + cot²A).

Solution :

(1 + tan²A)/(1 + cot²A)

  • 1 + tan²A = sec²A
  • 1 + cot²A = cosec²A

=> (sec²A)/(cos²A)

  • sec²A = 1/cos²A
  • cosec²A = 1/sec²A

=> (1/cos²A)/(1/sin²A)

=> (1/cos²A) × (sin²A/1)

=> (sin²A/cos²A)

  • sin²A/cos²A = tan²A

=> tan²A

Hence :

  • The value of (1 + tan²A)/(1 + cot²A) is tan²A.
Answered by TheEnchanted
6

\bf\huge{\underline{\orange{Question↴}}}

➥What is the value of

( 1+tan²A)+1+cot²A)

\bf\huge{\underline{\orange{Answer↴}}}

\bf\dfrac{ (1 + tan²A) }{(1 + cot²A) }

  • 1 + tan²A = sec²A

  • 1 + cot²A = cosec²A

\bf\dfrac{(sec²A) }{cos²A}

  • Sec²A = \bf\dfrac{1}{cos²A}

  • Cosec²A = \bf\dfrac{1}{sec²A}

➥ ( \bf\dfrac{1}{cos²A}) ÷ ( \bf\dfrac{1}{sin²A})

➥( \bf\dfrac{1}{cos²A}) × ( \bf\dfrac{sin²A}{1})

➥ (\bf\dfrac{sin²A}{cos²A})

  • \bf\dfrac{sin²A}{cos²A} = tan²A

➥ tan²A

\bf{\bold{\orange{\therefore The~answer~is~tan²A}}}

Similar questions