what is the value of ( 1+tan2O)+1+cot2O)
Answers
Answered by
8
Answer:
Explanation:
Given :
- (1 + tan²A)/(1 + cot²A)
To Find :
- The value of (1 + tan²A)/(1 + cot²A).
Solution :
(1 + tan²A)/(1 + cot²A)
- 1 + tan²A = sec²A
- 1 + cot²A = cosec²A
=> (sec²A)/(cos²A)
- sec²A = 1/cos²A
- cosec²A = 1/sec²A
=> (1/cos²A)/(1/sin²A)
=> (1/cos²A) × (sin²A/1)
=> (sin²A/cos²A)
- sin²A/cos²A = tan²A
=> tan²A
Hence :
- The value of (1 + tan²A)/(1 + cot²A) is tan²A.
Answered by
6
➥What is the value of
( 1+tan²A)+1+cot²A)
➥
- 1 + tan²A = sec²A
- 1 + cot²A = cosec²A
➥
- Sec²A =
- Cosec²A =
➥ ( ) ÷ ( )
➥( ) × ( )
➥ ()
- = tan²A
➥ tan²A
Similar questions