Math, asked by Anonymous, 3 months ago

what is the value of (1/x-1/y) if 6/x-3/y=10 and 2/x-5/y=6 ?​

Answers

Answered by Anonymous
3

Given Equation

 \tt \to \:  \dfrac{6}{x}  -  \dfrac{3}{y}  = 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (i)

\tt \to \:  \dfrac{2}{x}  -  \dfrac{5}{y}  = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (ii)

To find

 \tt \to \:  \bigg( \dfrac{1}{x}  -  \dfrac{1}{y}  \bigg)

Now Let

 \tt \to \:  \dfrac{1}{x}  = u

 \tt \to \:  \dfrac{1}{y}  = v

We get

 \tt \to \: 6u - 3v = 10 \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \: (i)

 \tt \to \: 2u - 5v = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (ii)

Using Substitution Method so take (i)eq

 \tt \to \: 6u - 3v = 10 \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \: (i)

 \tt \to \: 6u  = 10  + 3v

 \tt \to \: u =  \dfrac{10 + 3v}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (iii)

Now Put the value of u on (ii)eq

 \tt \to \: 2u - 5v = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (ii)

 \tt \to2 \bigg( \dfrac{10 + 3v}{6}  \bigg) - 5v = 6

 \tt \to\dfrac{10 + 3v}{3}   - 5v = 6

 \tt \to10 + 3v - 15v = 18

 \tt \to \: - 12v = 18 - 10

 \tt \to \:  - 12v = 8

 \tt \to \: v =  \dfrac{ - 8}{12}  =  \dfrac{ - 2}{3}

 \tt \to \: v =  \dfrac{ - 2}{3}

Now Put the value of v in (iii) eq

\tt \to \: u =  \dfrac{10 + 3v}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (iii)

\tt \to \: u =  \dfrac{10 + 3 \times  \dfrac{ - 2}{3} }{6}

\tt \to \: u =  \dfrac{10  - 2  }{6}  =  \dfrac{8}{6}  =  \dfrac{4}{3}

 \tt \to \: u =  \dfrac{4}{3}

We get

\tt \to \:  \dfrac{1}{x}  =  \dfrac{4}{3}

 \tt \to \:  \dfrac{1}{y}  =  \dfrac{ - 2}{3}

Now we have to find

\tt \to \:  \bigg( \dfrac{1}{x}  -  \dfrac{1}{y}  \bigg)

Put the value

 \tt \to \dfrac{4}{3}  +  \dfrac{2}{3}

 \tt \to \:  \dfrac{6}{3}  = 2

Answer is 2

Similar questions