What is the value of 2 sin A cos A ?, if A = 221/2
Answers
Answered by
2
Answer:
we know that →
→Cos 2θ=Cos^2θ - sin^2θ
→Cos2θ = 1-sin^θ -sin^2 θ
→Cos 2θ = 1- 2sin^2 θ
→2sin^2 θ = 1- cos 2θ
Therefore:
→Let θ = 22 1/2
→Put θ value in (1)
→Sin ^2 221/2= (1- cos 2×221/2)/2
=(1-cos 45)/2
=(1 - 1/root2)/2
=(root2- 1)/(2root2)
Therefore:
Sin 221/2= sqrt[(sqrt2 - 1)/2sqrt2]
Answered by
0
Answer:
sinA=p/h, =221/2
p=221
h=2
b=?
b=√p2-h2
b=√221^-2^
=√442-4
=√438.
cosA=b/h, =221/2
b=221
h=2
p=?
p=√b^-h^
p=√221^-2^
=√442-4
=√438.
=438×2=876.
Similar questions